blob: 78e492455ea6571e960fefe12d20dafa958e6779 [file] [log] [blame]
Matthias Andreas Benkard832a54e2019-01-29 09:27:38 +01001/*
2Copyright 2017 The Kubernetes Authors.
3
4Licensed under the Apache License, Version 2.0 (the "License");
5you may not use this file except in compliance with the License.
6You may obtain a copy of the License at
7
8 http://www.apache.org/licenses/LICENSE-2.0
9
10Unless required by applicable law or agreed to in writing, software
11distributed under the License is distributed on an "AS IS" BASIS,
12WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13See the License for the specific language governing permissions and
14limitations under the License.
15*/
16
17// This file implements a heap data structure.
18
19package cache
20
21import (
22 "container/heap"
23 "fmt"
24 "sync"
25)
26
27const (
28 closedMsg = "heap is closed"
29)
30
31type LessFunc func(interface{}, interface{}) bool
32type heapItem struct {
33 obj interface{} // The object which is stored in the heap.
34 index int // The index of the object's key in the Heap.queue.
35}
36
37type itemKeyValue struct {
38 key string
39 obj interface{}
40}
41
42// heapData is an internal struct that implements the standard heap interface
43// and keeps the data stored in the heap.
44type heapData struct {
45 // items is a map from key of the objects to the objects and their index.
46 // We depend on the property that items in the map are in the queue and vice versa.
47 items map[string]*heapItem
48 // queue implements a heap data structure and keeps the order of elements
49 // according to the heap invariant. The queue keeps the keys of objects stored
50 // in "items".
51 queue []string
52
53 // keyFunc is used to make the key used for queued item insertion and retrieval, and
54 // should be deterministic.
55 keyFunc KeyFunc
56 // lessFunc is used to compare two objects in the heap.
57 lessFunc LessFunc
58}
59
60var (
61 _ = heap.Interface(&heapData{}) // heapData is a standard heap
62)
63
64// Less compares two objects and returns true if the first one should go
65// in front of the second one in the heap.
66func (h *heapData) Less(i, j int) bool {
67 if i > len(h.queue) || j > len(h.queue) {
68 return false
69 }
70 itemi, ok := h.items[h.queue[i]]
71 if !ok {
72 return false
73 }
74 itemj, ok := h.items[h.queue[j]]
75 if !ok {
76 return false
77 }
78 return h.lessFunc(itemi.obj, itemj.obj)
79}
80
81// Len returns the number of items in the Heap.
82func (h *heapData) Len() int { return len(h.queue) }
83
84// Swap implements swapping of two elements in the heap. This is a part of standard
85// heap interface and should never be called directly.
86func (h *heapData) Swap(i, j int) {
87 h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
88 item := h.items[h.queue[i]]
89 item.index = i
90 item = h.items[h.queue[j]]
91 item.index = j
92}
93
94// Push is supposed to be called by heap.Push only.
95func (h *heapData) Push(kv interface{}) {
96 keyValue := kv.(*itemKeyValue)
97 n := len(h.queue)
98 h.items[keyValue.key] = &heapItem{keyValue.obj, n}
99 h.queue = append(h.queue, keyValue.key)
100}
101
102// Pop is supposed to be called by heap.Pop only.
103func (h *heapData) Pop() interface{} {
104 key := h.queue[len(h.queue)-1]
105 h.queue = h.queue[0 : len(h.queue)-1]
106 item, ok := h.items[key]
107 if !ok {
108 // This is an error
109 return nil
110 }
111 delete(h.items, key)
112 return item.obj
113}
114
115// Heap is a thread-safe producer/consumer queue that implements a heap data structure.
116// It can be used to implement priority queues and similar data structures.
117type Heap struct {
118 lock sync.RWMutex
119 cond sync.Cond
120
121 // data stores objects and has a queue that keeps their ordering according
122 // to the heap invariant.
123 data *heapData
124
125 // closed indicates that the queue is closed.
126 // It is mainly used to let Pop() exit its control loop while waiting for an item.
127 closed bool
128}
129
130// Close the Heap and signals condition variables that may be waiting to pop
131// items from the heap.
132func (h *Heap) Close() {
133 h.lock.Lock()
134 defer h.lock.Unlock()
135 h.closed = true
136 h.cond.Broadcast()
137}
138
139// Add inserts an item, and puts it in the queue. The item is updated if it
140// already exists.
141func (h *Heap) Add(obj interface{}) error {
142 key, err := h.data.keyFunc(obj)
143 if err != nil {
144 return KeyError{obj, err}
145 }
146 h.lock.Lock()
147 defer h.lock.Unlock()
148 if h.closed {
149 return fmt.Errorf(closedMsg)
150 }
151 if _, exists := h.data.items[key]; exists {
152 h.data.items[key].obj = obj
153 heap.Fix(h.data, h.data.items[key].index)
154 } else {
155 h.addIfNotPresentLocked(key, obj)
156 }
157 h.cond.Broadcast()
158 return nil
159}
160
161// Adds all the items in the list to the queue and then signals the condition
162// variable. It is useful when the caller would like to add all of the items
163// to the queue before consumer starts processing them.
164func (h *Heap) BulkAdd(list []interface{}) error {
165 h.lock.Lock()
166 defer h.lock.Unlock()
167 if h.closed {
168 return fmt.Errorf(closedMsg)
169 }
170 for _, obj := range list {
171 key, err := h.data.keyFunc(obj)
172 if err != nil {
173 return KeyError{obj, err}
174 }
175 if _, exists := h.data.items[key]; exists {
176 h.data.items[key].obj = obj
177 heap.Fix(h.data, h.data.items[key].index)
178 } else {
179 h.addIfNotPresentLocked(key, obj)
180 }
181 }
182 h.cond.Broadcast()
183 return nil
184}
185
186// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
187// the key is present in the map, no changes is made to the item.
188//
189// This is useful in a single producer/consumer scenario so that the consumer can
190// safely retry items without contending with the producer and potentially enqueueing
191// stale items.
192func (h *Heap) AddIfNotPresent(obj interface{}) error {
193 id, err := h.data.keyFunc(obj)
194 if err != nil {
195 return KeyError{obj, err}
196 }
197 h.lock.Lock()
198 defer h.lock.Unlock()
199 if h.closed {
200 return fmt.Errorf(closedMsg)
201 }
202 h.addIfNotPresentLocked(id, obj)
203 h.cond.Broadcast()
204 return nil
205}
206
207// addIfNotPresentLocked assumes the lock is already held and adds the the provided
208// item to the queue if it does not already exist.
209func (h *Heap) addIfNotPresentLocked(key string, obj interface{}) {
210 if _, exists := h.data.items[key]; exists {
211 return
212 }
213 heap.Push(h.data, &itemKeyValue{key, obj})
214}
215
216// Update is the same as Add in this implementation. When the item does not
217// exist, it is added.
218func (h *Heap) Update(obj interface{}) error {
219 return h.Add(obj)
220}
221
222// Delete removes an item.
223func (h *Heap) Delete(obj interface{}) error {
224 key, err := h.data.keyFunc(obj)
225 if err != nil {
226 return KeyError{obj, err}
227 }
228 h.lock.Lock()
229 defer h.lock.Unlock()
230 if item, ok := h.data.items[key]; ok {
231 heap.Remove(h.data, item.index)
232 return nil
233 }
234 return fmt.Errorf("object not found")
235}
236
237// Pop waits until an item is ready. If multiple items are
238// ready, they are returned in the order given by Heap.data.lessFunc.
239func (h *Heap) Pop() (interface{}, error) {
240 h.lock.Lock()
241 defer h.lock.Unlock()
242 for len(h.data.queue) == 0 {
243 // When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
244 // When Close() is called, the h.closed is set and the condition is broadcast,
245 // which causes this loop to continue and return from the Pop().
246 if h.closed {
247 return nil, fmt.Errorf("heap is closed")
248 }
249 h.cond.Wait()
250 }
251 obj := heap.Pop(h.data)
252 if obj != nil {
253 return obj, nil
254 } else {
255 return nil, fmt.Errorf("object was removed from heap data")
256 }
257}
258
259// List returns a list of all the items.
260func (h *Heap) List() []interface{} {
261 h.lock.RLock()
262 defer h.lock.RUnlock()
263 list := make([]interface{}, 0, len(h.data.items))
264 for _, item := range h.data.items {
265 list = append(list, item.obj)
266 }
267 return list
268}
269
270// ListKeys returns a list of all the keys of the objects currently in the Heap.
271func (h *Heap) ListKeys() []string {
272 h.lock.RLock()
273 defer h.lock.RUnlock()
274 list := make([]string, 0, len(h.data.items))
275 for key := range h.data.items {
276 list = append(list, key)
277 }
278 return list
279}
280
281// Get returns the requested item, or sets exists=false.
282func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
283 key, err := h.data.keyFunc(obj)
284 if err != nil {
285 return nil, false, KeyError{obj, err}
286 }
287 return h.GetByKey(key)
288}
289
290// GetByKey returns the requested item, or sets exists=false.
291func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
292 h.lock.RLock()
293 defer h.lock.RUnlock()
294 item, exists := h.data.items[key]
295 if !exists {
296 return nil, false, nil
297 }
298 return item.obj, true, nil
299}
300
301// IsClosed returns true if the queue is closed.
302func (h *Heap) IsClosed() bool {
303 h.lock.RLock()
304 defer h.lock.RUnlock()
305 if h.closed {
306 return true
307 }
308 return false
309}
310
311// NewHeap returns a Heap which can be used to queue up items to process.
312func NewHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
313 h := &Heap{
314 data: &heapData{
315 items: map[string]*heapItem{},
316 queue: []string{},
317 keyFunc: keyFn,
318 lessFunc: lessFn,
319 },
320 }
321 h.cond.L = &h.lock
322 return h
323}