Matthias Andreas Benkard | 832a54e | 2019-01-29 09:27:38 +0100 | [diff] [blame^] | 1 | /* |
| 2 | Copyright 2017 The Kubernetes Authors. |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | // This file implements a heap data structure. |
| 18 | |
| 19 | package cache |
| 20 | |
| 21 | import ( |
| 22 | "container/heap" |
| 23 | "fmt" |
| 24 | "sync" |
| 25 | ) |
| 26 | |
| 27 | const ( |
| 28 | closedMsg = "heap is closed" |
| 29 | ) |
| 30 | |
| 31 | type LessFunc func(interface{}, interface{}) bool |
| 32 | type heapItem struct { |
| 33 | obj interface{} // The object which is stored in the heap. |
| 34 | index int // The index of the object's key in the Heap.queue. |
| 35 | } |
| 36 | |
| 37 | type itemKeyValue struct { |
| 38 | key string |
| 39 | obj interface{} |
| 40 | } |
| 41 | |
| 42 | // heapData is an internal struct that implements the standard heap interface |
| 43 | // and keeps the data stored in the heap. |
| 44 | type heapData struct { |
| 45 | // items is a map from key of the objects to the objects and their index. |
| 46 | // We depend on the property that items in the map are in the queue and vice versa. |
| 47 | items map[string]*heapItem |
| 48 | // queue implements a heap data structure and keeps the order of elements |
| 49 | // according to the heap invariant. The queue keeps the keys of objects stored |
| 50 | // in "items". |
| 51 | queue []string |
| 52 | |
| 53 | // keyFunc is used to make the key used for queued item insertion and retrieval, and |
| 54 | // should be deterministic. |
| 55 | keyFunc KeyFunc |
| 56 | // lessFunc is used to compare two objects in the heap. |
| 57 | lessFunc LessFunc |
| 58 | } |
| 59 | |
| 60 | var ( |
| 61 | _ = heap.Interface(&heapData{}) // heapData is a standard heap |
| 62 | ) |
| 63 | |
| 64 | // Less compares two objects and returns true if the first one should go |
| 65 | // in front of the second one in the heap. |
| 66 | func (h *heapData) Less(i, j int) bool { |
| 67 | if i > len(h.queue) || j > len(h.queue) { |
| 68 | return false |
| 69 | } |
| 70 | itemi, ok := h.items[h.queue[i]] |
| 71 | if !ok { |
| 72 | return false |
| 73 | } |
| 74 | itemj, ok := h.items[h.queue[j]] |
| 75 | if !ok { |
| 76 | return false |
| 77 | } |
| 78 | return h.lessFunc(itemi.obj, itemj.obj) |
| 79 | } |
| 80 | |
| 81 | // Len returns the number of items in the Heap. |
| 82 | func (h *heapData) Len() int { return len(h.queue) } |
| 83 | |
| 84 | // Swap implements swapping of two elements in the heap. This is a part of standard |
| 85 | // heap interface and should never be called directly. |
| 86 | func (h *heapData) Swap(i, j int) { |
| 87 | h.queue[i], h.queue[j] = h.queue[j], h.queue[i] |
| 88 | item := h.items[h.queue[i]] |
| 89 | item.index = i |
| 90 | item = h.items[h.queue[j]] |
| 91 | item.index = j |
| 92 | } |
| 93 | |
| 94 | // Push is supposed to be called by heap.Push only. |
| 95 | func (h *heapData) Push(kv interface{}) { |
| 96 | keyValue := kv.(*itemKeyValue) |
| 97 | n := len(h.queue) |
| 98 | h.items[keyValue.key] = &heapItem{keyValue.obj, n} |
| 99 | h.queue = append(h.queue, keyValue.key) |
| 100 | } |
| 101 | |
| 102 | // Pop is supposed to be called by heap.Pop only. |
| 103 | func (h *heapData) Pop() interface{} { |
| 104 | key := h.queue[len(h.queue)-1] |
| 105 | h.queue = h.queue[0 : len(h.queue)-1] |
| 106 | item, ok := h.items[key] |
| 107 | if !ok { |
| 108 | // This is an error |
| 109 | return nil |
| 110 | } |
| 111 | delete(h.items, key) |
| 112 | return item.obj |
| 113 | } |
| 114 | |
| 115 | // Heap is a thread-safe producer/consumer queue that implements a heap data structure. |
| 116 | // It can be used to implement priority queues and similar data structures. |
| 117 | type Heap struct { |
| 118 | lock sync.RWMutex |
| 119 | cond sync.Cond |
| 120 | |
| 121 | // data stores objects and has a queue that keeps their ordering according |
| 122 | // to the heap invariant. |
| 123 | data *heapData |
| 124 | |
| 125 | // closed indicates that the queue is closed. |
| 126 | // It is mainly used to let Pop() exit its control loop while waiting for an item. |
| 127 | closed bool |
| 128 | } |
| 129 | |
| 130 | // Close the Heap and signals condition variables that may be waiting to pop |
| 131 | // items from the heap. |
| 132 | func (h *Heap) Close() { |
| 133 | h.lock.Lock() |
| 134 | defer h.lock.Unlock() |
| 135 | h.closed = true |
| 136 | h.cond.Broadcast() |
| 137 | } |
| 138 | |
| 139 | // Add inserts an item, and puts it in the queue. The item is updated if it |
| 140 | // already exists. |
| 141 | func (h *Heap) Add(obj interface{}) error { |
| 142 | key, err := h.data.keyFunc(obj) |
| 143 | if err != nil { |
| 144 | return KeyError{obj, err} |
| 145 | } |
| 146 | h.lock.Lock() |
| 147 | defer h.lock.Unlock() |
| 148 | if h.closed { |
| 149 | return fmt.Errorf(closedMsg) |
| 150 | } |
| 151 | if _, exists := h.data.items[key]; exists { |
| 152 | h.data.items[key].obj = obj |
| 153 | heap.Fix(h.data, h.data.items[key].index) |
| 154 | } else { |
| 155 | h.addIfNotPresentLocked(key, obj) |
| 156 | } |
| 157 | h.cond.Broadcast() |
| 158 | return nil |
| 159 | } |
| 160 | |
| 161 | // Adds all the items in the list to the queue and then signals the condition |
| 162 | // variable. It is useful when the caller would like to add all of the items |
| 163 | // to the queue before consumer starts processing them. |
| 164 | func (h *Heap) BulkAdd(list []interface{}) error { |
| 165 | h.lock.Lock() |
| 166 | defer h.lock.Unlock() |
| 167 | if h.closed { |
| 168 | return fmt.Errorf(closedMsg) |
| 169 | } |
| 170 | for _, obj := range list { |
| 171 | key, err := h.data.keyFunc(obj) |
| 172 | if err != nil { |
| 173 | return KeyError{obj, err} |
| 174 | } |
| 175 | if _, exists := h.data.items[key]; exists { |
| 176 | h.data.items[key].obj = obj |
| 177 | heap.Fix(h.data, h.data.items[key].index) |
| 178 | } else { |
| 179 | h.addIfNotPresentLocked(key, obj) |
| 180 | } |
| 181 | } |
| 182 | h.cond.Broadcast() |
| 183 | return nil |
| 184 | } |
| 185 | |
| 186 | // AddIfNotPresent inserts an item, and puts it in the queue. If an item with |
| 187 | // the key is present in the map, no changes is made to the item. |
| 188 | // |
| 189 | // This is useful in a single producer/consumer scenario so that the consumer can |
| 190 | // safely retry items without contending with the producer and potentially enqueueing |
| 191 | // stale items. |
| 192 | func (h *Heap) AddIfNotPresent(obj interface{}) error { |
| 193 | id, err := h.data.keyFunc(obj) |
| 194 | if err != nil { |
| 195 | return KeyError{obj, err} |
| 196 | } |
| 197 | h.lock.Lock() |
| 198 | defer h.lock.Unlock() |
| 199 | if h.closed { |
| 200 | return fmt.Errorf(closedMsg) |
| 201 | } |
| 202 | h.addIfNotPresentLocked(id, obj) |
| 203 | h.cond.Broadcast() |
| 204 | return nil |
| 205 | } |
| 206 | |
| 207 | // addIfNotPresentLocked assumes the lock is already held and adds the the provided |
| 208 | // item to the queue if it does not already exist. |
| 209 | func (h *Heap) addIfNotPresentLocked(key string, obj interface{}) { |
| 210 | if _, exists := h.data.items[key]; exists { |
| 211 | return |
| 212 | } |
| 213 | heap.Push(h.data, &itemKeyValue{key, obj}) |
| 214 | } |
| 215 | |
| 216 | // Update is the same as Add in this implementation. When the item does not |
| 217 | // exist, it is added. |
| 218 | func (h *Heap) Update(obj interface{}) error { |
| 219 | return h.Add(obj) |
| 220 | } |
| 221 | |
| 222 | // Delete removes an item. |
| 223 | func (h *Heap) Delete(obj interface{}) error { |
| 224 | key, err := h.data.keyFunc(obj) |
| 225 | if err != nil { |
| 226 | return KeyError{obj, err} |
| 227 | } |
| 228 | h.lock.Lock() |
| 229 | defer h.lock.Unlock() |
| 230 | if item, ok := h.data.items[key]; ok { |
| 231 | heap.Remove(h.data, item.index) |
| 232 | return nil |
| 233 | } |
| 234 | return fmt.Errorf("object not found") |
| 235 | } |
| 236 | |
| 237 | // Pop waits until an item is ready. If multiple items are |
| 238 | // ready, they are returned in the order given by Heap.data.lessFunc. |
| 239 | func (h *Heap) Pop() (interface{}, error) { |
| 240 | h.lock.Lock() |
| 241 | defer h.lock.Unlock() |
| 242 | for len(h.data.queue) == 0 { |
| 243 | // When the queue is empty, invocation of Pop() is blocked until new item is enqueued. |
| 244 | // When Close() is called, the h.closed is set and the condition is broadcast, |
| 245 | // which causes this loop to continue and return from the Pop(). |
| 246 | if h.closed { |
| 247 | return nil, fmt.Errorf("heap is closed") |
| 248 | } |
| 249 | h.cond.Wait() |
| 250 | } |
| 251 | obj := heap.Pop(h.data) |
| 252 | if obj != nil { |
| 253 | return obj, nil |
| 254 | } else { |
| 255 | return nil, fmt.Errorf("object was removed from heap data") |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | // List returns a list of all the items. |
| 260 | func (h *Heap) List() []interface{} { |
| 261 | h.lock.RLock() |
| 262 | defer h.lock.RUnlock() |
| 263 | list := make([]interface{}, 0, len(h.data.items)) |
| 264 | for _, item := range h.data.items { |
| 265 | list = append(list, item.obj) |
| 266 | } |
| 267 | return list |
| 268 | } |
| 269 | |
| 270 | // ListKeys returns a list of all the keys of the objects currently in the Heap. |
| 271 | func (h *Heap) ListKeys() []string { |
| 272 | h.lock.RLock() |
| 273 | defer h.lock.RUnlock() |
| 274 | list := make([]string, 0, len(h.data.items)) |
| 275 | for key := range h.data.items { |
| 276 | list = append(list, key) |
| 277 | } |
| 278 | return list |
| 279 | } |
| 280 | |
| 281 | // Get returns the requested item, or sets exists=false. |
| 282 | func (h *Heap) Get(obj interface{}) (interface{}, bool, error) { |
| 283 | key, err := h.data.keyFunc(obj) |
| 284 | if err != nil { |
| 285 | return nil, false, KeyError{obj, err} |
| 286 | } |
| 287 | return h.GetByKey(key) |
| 288 | } |
| 289 | |
| 290 | // GetByKey returns the requested item, or sets exists=false. |
| 291 | func (h *Heap) GetByKey(key string) (interface{}, bool, error) { |
| 292 | h.lock.RLock() |
| 293 | defer h.lock.RUnlock() |
| 294 | item, exists := h.data.items[key] |
| 295 | if !exists { |
| 296 | return nil, false, nil |
| 297 | } |
| 298 | return item.obj, true, nil |
| 299 | } |
| 300 | |
| 301 | // IsClosed returns true if the queue is closed. |
| 302 | func (h *Heap) IsClosed() bool { |
| 303 | h.lock.RLock() |
| 304 | defer h.lock.RUnlock() |
| 305 | if h.closed { |
| 306 | return true |
| 307 | } |
| 308 | return false |
| 309 | } |
| 310 | |
| 311 | // NewHeap returns a Heap which can be used to queue up items to process. |
| 312 | func NewHeap(keyFn KeyFunc, lessFn LessFunc) *Heap { |
| 313 | h := &Heap{ |
| 314 | data: &heapData{ |
| 315 | items: map[string]*heapItem{}, |
| 316 | queue: []string{}, |
| 317 | keyFunc: keyFn, |
| 318 | lessFunc: lessFn, |
| 319 | }, |
| 320 | } |
| 321 | h.cond.L = &h.lock |
| 322 | return h |
| 323 | } |