Matthias Andreas Benkard | 832a54e | 2019-01-29 09:27:38 +0100 | [diff] [blame^] | 1 | // Package inf (type inf.Dec) implements "infinite-precision" decimal |
| 2 | // arithmetic. |
| 3 | // "Infinite precision" describes two characteristics: practically unlimited |
| 4 | // precision for decimal number representation and no support for calculating |
| 5 | // with any specific fixed precision. |
| 6 | // (Although there is no practical limit on precision, inf.Dec can only |
| 7 | // represent finite decimals.) |
| 8 | // |
| 9 | // This package is currently in experimental stage and the API may change. |
| 10 | // |
| 11 | // This package does NOT support: |
| 12 | // - rounding to specific precisions (as opposed to specific decimal positions) |
| 13 | // - the notion of context (each rounding must be explicit) |
| 14 | // - NaN and Inf values, and distinguishing between positive and negative zero |
| 15 | // - conversions to and from float32/64 types |
| 16 | // |
| 17 | // Features considered for possible addition: |
| 18 | // + formatting options |
| 19 | // + Exp method |
| 20 | // + combined operations such as AddRound/MulAdd etc |
| 21 | // + exchanging data in decimal32/64/128 formats |
| 22 | // |
| 23 | package inf // import "gopkg.in/inf.v0" |
| 24 | |
| 25 | // TODO: |
| 26 | // - avoid excessive deep copying (quo and rounders) |
| 27 | |
| 28 | import ( |
| 29 | "fmt" |
| 30 | "io" |
| 31 | "math/big" |
| 32 | "strings" |
| 33 | ) |
| 34 | |
| 35 | // A Dec represents a signed arbitrary-precision decimal. |
| 36 | // It is a combination of a sign, an arbitrary-precision integer coefficient |
| 37 | // value, and a signed fixed-precision exponent value. |
| 38 | // The sign and the coefficient value are handled together as a signed value |
| 39 | // and referred to as the unscaled value. |
| 40 | // (Positive and negative zero values are not distinguished.) |
| 41 | // Since the exponent is most commonly non-positive, it is handled in negated |
| 42 | // form and referred to as scale. |
| 43 | // |
| 44 | // The mathematical value of a Dec equals: |
| 45 | // |
| 46 | // unscaled * 10**(-scale) |
| 47 | // |
| 48 | // Note that different Dec representations may have equal mathematical values. |
| 49 | // |
| 50 | // unscaled scale String() |
| 51 | // ------------------------- |
| 52 | // 0 0 "0" |
| 53 | // 0 2 "0.00" |
| 54 | // 0 -2 "0" |
| 55 | // 1 0 "1" |
| 56 | // 100 2 "1.00" |
| 57 | // 10 0 "10" |
| 58 | // 1 -1 "10" |
| 59 | // |
| 60 | // The zero value for a Dec represents the value 0 with scale 0. |
| 61 | // |
| 62 | // Operations are typically performed through the *Dec type. |
| 63 | // The semantics of the assignment operation "=" for "bare" Dec values is |
| 64 | // undefined and should not be relied on. |
| 65 | // |
| 66 | // Methods are typically of the form: |
| 67 | // |
| 68 | // func (z *Dec) Op(x, y *Dec) *Dec |
| 69 | // |
| 70 | // and implement operations z = x Op y with the result as receiver; if it |
| 71 | // is one of the operands it may be overwritten (and its memory reused). |
| 72 | // To enable chaining of operations, the result is also returned. Methods |
| 73 | // returning a result other than *Dec take one of the operands as the receiver. |
| 74 | // |
| 75 | // A "bare" Quo method (quotient / division operation) is not provided, as the |
| 76 | // result is not always a finite decimal and thus in general cannot be |
| 77 | // represented as a Dec. |
| 78 | // Instead, in the common case when rounding is (potentially) necessary, |
| 79 | // QuoRound should be used with a Scale and a Rounder. |
| 80 | // QuoExact or QuoRound with RoundExact can be used in the special cases when it |
| 81 | // is known that the result is always a finite decimal. |
| 82 | // |
| 83 | type Dec struct { |
| 84 | unscaled big.Int |
| 85 | scale Scale |
| 86 | } |
| 87 | |
| 88 | // Scale represents the type used for the scale of a Dec. |
| 89 | type Scale int32 |
| 90 | |
| 91 | const scaleSize = 4 // bytes in a Scale value |
| 92 | |
| 93 | // Scaler represents a method for obtaining the scale to use for the result of |
| 94 | // an operation on x and y. |
| 95 | type scaler interface { |
| 96 | Scale(x *Dec, y *Dec) Scale |
| 97 | } |
| 98 | |
| 99 | var bigInt = [...]*big.Int{ |
| 100 | big.NewInt(0), big.NewInt(1), big.NewInt(2), big.NewInt(3), big.NewInt(4), |
| 101 | big.NewInt(5), big.NewInt(6), big.NewInt(7), big.NewInt(8), big.NewInt(9), |
| 102 | big.NewInt(10), |
| 103 | } |
| 104 | |
| 105 | var exp10cache [64]big.Int = func() [64]big.Int { |
| 106 | e10, e10i := [64]big.Int{}, bigInt[1] |
| 107 | for i := range e10 { |
| 108 | e10[i].Set(e10i) |
| 109 | e10i = new(big.Int).Mul(e10i, bigInt[10]) |
| 110 | } |
| 111 | return e10 |
| 112 | }() |
| 113 | |
| 114 | // NewDec allocates and returns a new Dec set to the given int64 unscaled value |
| 115 | // and scale. |
| 116 | func NewDec(unscaled int64, scale Scale) *Dec { |
| 117 | return new(Dec).SetUnscaled(unscaled).SetScale(scale) |
| 118 | } |
| 119 | |
| 120 | // NewDecBig allocates and returns a new Dec set to the given *big.Int unscaled |
| 121 | // value and scale. |
| 122 | func NewDecBig(unscaled *big.Int, scale Scale) *Dec { |
| 123 | return new(Dec).SetUnscaledBig(unscaled).SetScale(scale) |
| 124 | } |
| 125 | |
| 126 | // Scale returns the scale of x. |
| 127 | func (x *Dec) Scale() Scale { |
| 128 | return x.scale |
| 129 | } |
| 130 | |
| 131 | // Unscaled returns the unscaled value of x for u and true for ok when the |
| 132 | // unscaled value can be represented as int64; otherwise it returns an undefined |
| 133 | // int64 value for u and false for ok. Use x.UnscaledBig().Int64() to avoid |
| 134 | // checking the validity of the value when the check is known to be redundant. |
| 135 | func (x *Dec) Unscaled() (u int64, ok bool) { |
| 136 | u = x.unscaled.Int64() |
| 137 | var i big.Int |
| 138 | ok = i.SetInt64(u).Cmp(&x.unscaled) == 0 |
| 139 | return |
| 140 | } |
| 141 | |
| 142 | // UnscaledBig returns the unscaled value of x as *big.Int. |
| 143 | func (x *Dec) UnscaledBig() *big.Int { |
| 144 | return &x.unscaled |
| 145 | } |
| 146 | |
| 147 | // SetScale sets the scale of z, with the unscaled value unchanged, and returns |
| 148 | // z. |
| 149 | // The mathematical value of the Dec changes as if it was multiplied by |
| 150 | // 10**(oldscale-scale). |
| 151 | func (z *Dec) SetScale(scale Scale) *Dec { |
| 152 | z.scale = scale |
| 153 | return z |
| 154 | } |
| 155 | |
| 156 | // SetUnscaled sets the unscaled value of z, with the scale unchanged, and |
| 157 | // returns z. |
| 158 | func (z *Dec) SetUnscaled(unscaled int64) *Dec { |
| 159 | z.unscaled.SetInt64(unscaled) |
| 160 | return z |
| 161 | } |
| 162 | |
| 163 | // SetUnscaledBig sets the unscaled value of z, with the scale unchanged, and |
| 164 | // returns z. |
| 165 | func (z *Dec) SetUnscaledBig(unscaled *big.Int) *Dec { |
| 166 | z.unscaled.Set(unscaled) |
| 167 | return z |
| 168 | } |
| 169 | |
| 170 | // Set sets z to the value of x and returns z. |
| 171 | // It does nothing if z == x. |
| 172 | func (z *Dec) Set(x *Dec) *Dec { |
| 173 | if z != x { |
| 174 | z.SetUnscaledBig(x.UnscaledBig()) |
| 175 | z.SetScale(x.Scale()) |
| 176 | } |
| 177 | return z |
| 178 | } |
| 179 | |
| 180 | // Sign returns: |
| 181 | // |
| 182 | // -1 if x < 0 |
| 183 | // 0 if x == 0 |
| 184 | // +1 if x > 0 |
| 185 | // |
| 186 | func (x *Dec) Sign() int { |
| 187 | return x.UnscaledBig().Sign() |
| 188 | } |
| 189 | |
| 190 | // Neg sets z to -x and returns z. |
| 191 | func (z *Dec) Neg(x *Dec) *Dec { |
| 192 | z.SetScale(x.Scale()) |
| 193 | z.UnscaledBig().Neg(x.UnscaledBig()) |
| 194 | return z |
| 195 | } |
| 196 | |
| 197 | // Cmp compares x and y and returns: |
| 198 | // |
| 199 | // -1 if x < y |
| 200 | // 0 if x == y |
| 201 | // +1 if x > y |
| 202 | // |
| 203 | func (x *Dec) Cmp(y *Dec) int { |
| 204 | xx, yy := upscale(x, y) |
| 205 | return xx.UnscaledBig().Cmp(yy.UnscaledBig()) |
| 206 | } |
| 207 | |
| 208 | // Abs sets z to |x| (the absolute value of x) and returns z. |
| 209 | func (z *Dec) Abs(x *Dec) *Dec { |
| 210 | z.SetScale(x.Scale()) |
| 211 | z.UnscaledBig().Abs(x.UnscaledBig()) |
| 212 | return z |
| 213 | } |
| 214 | |
| 215 | // Add sets z to the sum x+y and returns z. |
| 216 | // The scale of z is the greater of the scales of x and y. |
| 217 | func (z *Dec) Add(x, y *Dec) *Dec { |
| 218 | xx, yy := upscale(x, y) |
| 219 | z.SetScale(xx.Scale()) |
| 220 | z.UnscaledBig().Add(xx.UnscaledBig(), yy.UnscaledBig()) |
| 221 | return z |
| 222 | } |
| 223 | |
| 224 | // Sub sets z to the difference x-y and returns z. |
| 225 | // The scale of z is the greater of the scales of x and y. |
| 226 | func (z *Dec) Sub(x, y *Dec) *Dec { |
| 227 | xx, yy := upscale(x, y) |
| 228 | z.SetScale(xx.Scale()) |
| 229 | z.UnscaledBig().Sub(xx.UnscaledBig(), yy.UnscaledBig()) |
| 230 | return z |
| 231 | } |
| 232 | |
| 233 | // Mul sets z to the product x*y and returns z. |
| 234 | // The scale of z is the sum of the scales of x and y. |
| 235 | func (z *Dec) Mul(x, y *Dec) *Dec { |
| 236 | z.SetScale(x.Scale() + y.Scale()) |
| 237 | z.UnscaledBig().Mul(x.UnscaledBig(), y.UnscaledBig()) |
| 238 | return z |
| 239 | } |
| 240 | |
| 241 | // Round sets z to the value of x rounded to Scale s using Rounder r, and |
| 242 | // returns z. |
| 243 | func (z *Dec) Round(x *Dec, s Scale, r Rounder) *Dec { |
| 244 | return z.QuoRound(x, NewDec(1, 0), s, r) |
| 245 | } |
| 246 | |
| 247 | // QuoRound sets z to the quotient x/y, rounded using the given Rounder to the |
| 248 | // specified scale. |
| 249 | // |
| 250 | // If the rounder is RoundExact but the result can not be expressed exactly at |
| 251 | // the specified scale, QuoRound returns nil, and the value of z is undefined. |
| 252 | // |
| 253 | // There is no corresponding Div method; the equivalent can be achieved through |
| 254 | // the choice of Rounder used. |
| 255 | // |
| 256 | func (z *Dec) QuoRound(x, y *Dec, s Scale, r Rounder) *Dec { |
| 257 | return z.quo(x, y, sclr{s}, r) |
| 258 | } |
| 259 | |
| 260 | func (z *Dec) quo(x, y *Dec, s scaler, r Rounder) *Dec { |
| 261 | scl := s.Scale(x, y) |
| 262 | var zzz *Dec |
| 263 | if r.UseRemainder() { |
| 264 | zz, rA, rB := new(Dec).quoRem(x, y, scl, true, new(big.Int), new(big.Int)) |
| 265 | zzz = r.Round(new(Dec), zz, rA, rB) |
| 266 | } else { |
| 267 | zz, _, _ := new(Dec).quoRem(x, y, scl, false, nil, nil) |
| 268 | zzz = r.Round(new(Dec), zz, nil, nil) |
| 269 | } |
| 270 | if zzz == nil { |
| 271 | return nil |
| 272 | } |
| 273 | return z.Set(zzz) |
| 274 | } |
| 275 | |
| 276 | // QuoExact sets z to the quotient x/y and returns z when x/y is a finite |
| 277 | // decimal. Otherwise it returns nil and the value of z is undefined. |
| 278 | // |
| 279 | // The scale of a non-nil result is "x.Scale() - y.Scale()" or greater; it is |
| 280 | // calculated so that the remainder will be zero whenever x/y is a finite |
| 281 | // decimal. |
| 282 | func (z *Dec) QuoExact(x, y *Dec) *Dec { |
| 283 | return z.quo(x, y, scaleQuoExact{}, RoundExact) |
| 284 | } |
| 285 | |
| 286 | // quoRem sets z to the quotient x/y with the scale s, and if useRem is true, |
| 287 | // it sets remNum and remDen to the numerator and denominator of the remainder. |
| 288 | // It returns z, remNum and remDen. |
| 289 | // |
| 290 | // The remainder is normalized to the range -1 < r < 1 to simplify rounding; |
| 291 | // that is, the results satisfy the following equation: |
| 292 | // |
| 293 | // x / y = z + (remNum/remDen) * 10**(-z.Scale()) |
| 294 | // |
| 295 | // See Rounder for more details about rounding. |
| 296 | // |
| 297 | func (z *Dec) quoRem(x, y *Dec, s Scale, useRem bool, |
| 298 | remNum, remDen *big.Int) (*Dec, *big.Int, *big.Int) { |
| 299 | // difference (required adjustment) compared to "canonical" result scale |
| 300 | shift := s - (x.Scale() - y.Scale()) |
| 301 | // pointers to adjusted unscaled dividend and divisor |
| 302 | var ix, iy *big.Int |
| 303 | switch { |
| 304 | case shift > 0: |
| 305 | // increased scale: decimal-shift dividend left |
| 306 | ix = new(big.Int).Mul(x.UnscaledBig(), exp10(shift)) |
| 307 | iy = y.UnscaledBig() |
| 308 | case shift < 0: |
| 309 | // decreased scale: decimal-shift divisor left |
| 310 | ix = x.UnscaledBig() |
| 311 | iy = new(big.Int).Mul(y.UnscaledBig(), exp10(-shift)) |
| 312 | default: |
| 313 | ix = x.UnscaledBig() |
| 314 | iy = y.UnscaledBig() |
| 315 | } |
| 316 | // save a copy of iy in case it to be overwritten with the result |
| 317 | iy2 := iy |
| 318 | if iy == z.UnscaledBig() { |
| 319 | iy2 = new(big.Int).Set(iy) |
| 320 | } |
| 321 | // set scale |
| 322 | z.SetScale(s) |
| 323 | // set unscaled |
| 324 | if useRem { |
| 325 | // Int division |
| 326 | _, intr := z.UnscaledBig().QuoRem(ix, iy, new(big.Int)) |
| 327 | // set remainder |
| 328 | remNum.Set(intr) |
| 329 | remDen.Set(iy2) |
| 330 | } else { |
| 331 | z.UnscaledBig().Quo(ix, iy) |
| 332 | } |
| 333 | return z, remNum, remDen |
| 334 | } |
| 335 | |
| 336 | type sclr struct{ s Scale } |
| 337 | |
| 338 | func (s sclr) Scale(x, y *Dec) Scale { |
| 339 | return s.s |
| 340 | } |
| 341 | |
| 342 | type scaleQuoExact struct{} |
| 343 | |
| 344 | func (sqe scaleQuoExact) Scale(x, y *Dec) Scale { |
| 345 | rem := new(big.Rat).SetFrac(x.UnscaledBig(), y.UnscaledBig()) |
| 346 | f2, f5 := factor2(rem.Denom()), factor(rem.Denom(), bigInt[5]) |
| 347 | var f10 Scale |
| 348 | if f2 > f5 { |
| 349 | f10 = Scale(f2) |
| 350 | } else { |
| 351 | f10 = Scale(f5) |
| 352 | } |
| 353 | return x.Scale() - y.Scale() + f10 |
| 354 | } |
| 355 | |
| 356 | func factor(n *big.Int, p *big.Int) int { |
| 357 | // could be improved for large factors |
| 358 | d, f := n, 0 |
| 359 | for { |
| 360 | dd, dm := new(big.Int).DivMod(d, p, new(big.Int)) |
| 361 | if dm.Sign() == 0 { |
| 362 | f++ |
| 363 | d = dd |
| 364 | } else { |
| 365 | break |
| 366 | } |
| 367 | } |
| 368 | return f |
| 369 | } |
| 370 | |
| 371 | func factor2(n *big.Int) int { |
| 372 | // could be improved for large factors |
| 373 | f := 0 |
| 374 | for ; n.Bit(f) == 0; f++ { |
| 375 | } |
| 376 | return f |
| 377 | } |
| 378 | |
| 379 | func upscale(a, b *Dec) (*Dec, *Dec) { |
| 380 | if a.Scale() == b.Scale() { |
| 381 | return a, b |
| 382 | } |
| 383 | if a.Scale() > b.Scale() { |
| 384 | bb := b.rescale(a.Scale()) |
| 385 | return a, bb |
| 386 | } |
| 387 | aa := a.rescale(b.Scale()) |
| 388 | return aa, b |
| 389 | } |
| 390 | |
| 391 | func exp10(x Scale) *big.Int { |
| 392 | if int(x) < len(exp10cache) { |
| 393 | return &exp10cache[int(x)] |
| 394 | } |
| 395 | return new(big.Int).Exp(bigInt[10], big.NewInt(int64(x)), nil) |
| 396 | } |
| 397 | |
| 398 | func (x *Dec) rescale(newScale Scale) *Dec { |
| 399 | shift := newScale - x.Scale() |
| 400 | switch { |
| 401 | case shift < 0: |
| 402 | e := exp10(-shift) |
| 403 | return NewDecBig(new(big.Int).Quo(x.UnscaledBig(), e), newScale) |
| 404 | case shift > 0: |
| 405 | e := exp10(shift) |
| 406 | return NewDecBig(new(big.Int).Mul(x.UnscaledBig(), e), newScale) |
| 407 | } |
| 408 | return x |
| 409 | } |
| 410 | |
| 411 | var zeros = []byte("00000000000000000000000000000000" + |
| 412 | "00000000000000000000000000000000") |
| 413 | var lzeros = Scale(len(zeros)) |
| 414 | |
| 415 | func appendZeros(s []byte, n Scale) []byte { |
| 416 | for i := Scale(0); i < n; i += lzeros { |
| 417 | if n > i+lzeros { |
| 418 | s = append(s, zeros...) |
| 419 | } else { |
| 420 | s = append(s, zeros[0:n-i]...) |
| 421 | } |
| 422 | } |
| 423 | return s |
| 424 | } |
| 425 | |
| 426 | func (x *Dec) String() string { |
| 427 | if x == nil { |
| 428 | return "<nil>" |
| 429 | } |
| 430 | scale := x.Scale() |
| 431 | s := []byte(x.UnscaledBig().String()) |
| 432 | if scale <= 0 { |
| 433 | if scale != 0 && x.unscaled.Sign() != 0 { |
| 434 | s = appendZeros(s, -scale) |
| 435 | } |
| 436 | return string(s) |
| 437 | } |
| 438 | negbit := Scale(-((x.Sign() - 1) / 2)) |
| 439 | // scale > 0 |
| 440 | lens := Scale(len(s)) |
| 441 | if lens-negbit <= scale { |
| 442 | ss := make([]byte, 0, scale+2) |
| 443 | if negbit == 1 { |
| 444 | ss = append(ss, '-') |
| 445 | } |
| 446 | ss = append(ss, '0', '.') |
| 447 | ss = appendZeros(ss, scale-lens+negbit) |
| 448 | ss = append(ss, s[negbit:]...) |
| 449 | return string(ss) |
| 450 | } |
| 451 | // lens > scale |
| 452 | ss := make([]byte, 0, lens+1) |
| 453 | ss = append(ss, s[:lens-scale]...) |
| 454 | ss = append(ss, '.') |
| 455 | ss = append(ss, s[lens-scale:]...) |
| 456 | return string(ss) |
| 457 | } |
| 458 | |
| 459 | // Format is a support routine for fmt.Formatter. It accepts the decimal |
| 460 | // formats 'd' and 'f', and handles both equivalently. |
| 461 | // Width, precision, flags and bases 2, 8, 16 are not supported. |
| 462 | func (x *Dec) Format(s fmt.State, ch rune) { |
| 463 | if ch != 'd' && ch != 'f' && ch != 'v' && ch != 's' { |
| 464 | fmt.Fprintf(s, "%%!%c(dec.Dec=%s)", ch, x.String()) |
| 465 | return |
| 466 | } |
| 467 | fmt.Fprintf(s, x.String()) |
| 468 | } |
| 469 | |
| 470 | func (z *Dec) scan(r io.RuneScanner) (*Dec, error) { |
| 471 | unscaled := make([]byte, 0, 256) // collects chars of unscaled as bytes |
| 472 | dp, dg := -1, -1 // indexes of decimal point, first digit |
| 473 | loop: |
| 474 | for { |
| 475 | ch, _, err := r.ReadRune() |
| 476 | if err == io.EOF { |
| 477 | break loop |
| 478 | } |
| 479 | if err != nil { |
| 480 | return nil, err |
| 481 | } |
| 482 | switch { |
| 483 | case ch == '+' || ch == '-': |
| 484 | if len(unscaled) > 0 || dp >= 0 { // must be first character |
| 485 | r.UnreadRune() |
| 486 | break loop |
| 487 | } |
| 488 | case ch == '.': |
| 489 | if dp >= 0 { |
| 490 | r.UnreadRune() |
| 491 | break loop |
| 492 | } |
| 493 | dp = len(unscaled) |
| 494 | continue // don't add to unscaled |
| 495 | case ch >= '0' && ch <= '9': |
| 496 | if dg == -1 { |
| 497 | dg = len(unscaled) |
| 498 | } |
| 499 | default: |
| 500 | r.UnreadRune() |
| 501 | break loop |
| 502 | } |
| 503 | unscaled = append(unscaled, byte(ch)) |
| 504 | } |
| 505 | if dg == -1 { |
| 506 | return nil, fmt.Errorf("no digits read") |
| 507 | } |
| 508 | if dp >= 0 { |
| 509 | z.SetScale(Scale(len(unscaled) - dp)) |
| 510 | } else { |
| 511 | z.SetScale(0) |
| 512 | } |
| 513 | _, ok := z.UnscaledBig().SetString(string(unscaled), 10) |
| 514 | if !ok { |
| 515 | return nil, fmt.Errorf("invalid decimal: %s", string(unscaled)) |
| 516 | } |
| 517 | return z, nil |
| 518 | } |
| 519 | |
| 520 | // SetString sets z to the value of s, interpreted as a decimal (base 10), |
| 521 | // and returns z and a boolean indicating success. The scale of z is the |
| 522 | // number of digits after the decimal point (including any trailing 0s), |
| 523 | // or 0 if there is no decimal point. If SetString fails, the value of z |
| 524 | // is undefined but the returned value is nil. |
| 525 | func (z *Dec) SetString(s string) (*Dec, bool) { |
| 526 | r := strings.NewReader(s) |
| 527 | _, err := z.scan(r) |
| 528 | if err != nil { |
| 529 | return nil, false |
| 530 | } |
| 531 | _, _, err = r.ReadRune() |
| 532 | if err != io.EOF { |
| 533 | return nil, false |
| 534 | } |
| 535 | // err == io.EOF => scan consumed all of s |
| 536 | return z, true |
| 537 | } |
| 538 | |
| 539 | // Scan is a support routine for fmt.Scanner; it sets z to the value of |
| 540 | // the scanned number. It accepts the decimal formats 'd' and 'f', and |
| 541 | // handles both equivalently. Bases 2, 8, 16 are not supported. |
| 542 | // The scale of z is the number of digits after the decimal point |
| 543 | // (including any trailing 0s), or 0 if there is no decimal point. |
| 544 | func (z *Dec) Scan(s fmt.ScanState, ch rune) error { |
| 545 | if ch != 'd' && ch != 'f' && ch != 's' && ch != 'v' { |
| 546 | return fmt.Errorf("Dec.Scan: invalid verb '%c'", ch) |
| 547 | } |
| 548 | s.SkipSpace() |
| 549 | _, err := z.scan(s) |
| 550 | return err |
| 551 | } |
| 552 | |
| 553 | // Gob encoding version |
| 554 | const decGobVersion byte = 1 |
| 555 | |
| 556 | func scaleBytes(s Scale) []byte { |
| 557 | buf := make([]byte, scaleSize) |
| 558 | i := scaleSize |
| 559 | for j := 0; j < scaleSize; j++ { |
| 560 | i-- |
| 561 | buf[i] = byte(s) |
| 562 | s >>= 8 |
| 563 | } |
| 564 | return buf |
| 565 | } |
| 566 | |
| 567 | func scale(b []byte) (s Scale) { |
| 568 | for j := 0; j < scaleSize; j++ { |
| 569 | s <<= 8 |
| 570 | s |= Scale(b[j]) |
| 571 | } |
| 572 | return |
| 573 | } |
| 574 | |
| 575 | // GobEncode implements the gob.GobEncoder interface. |
| 576 | func (x *Dec) GobEncode() ([]byte, error) { |
| 577 | buf, err := x.UnscaledBig().GobEncode() |
| 578 | if err != nil { |
| 579 | return nil, err |
| 580 | } |
| 581 | buf = append(append(buf, scaleBytes(x.Scale())...), decGobVersion) |
| 582 | return buf, nil |
| 583 | } |
| 584 | |
| 585 | // GobDecode implements the gob.GobDecoder interface. |
| 586 | func (z *Dec) GobDecode(buf []byte) error { |
| 587 | if len(buf) == 0 { |
| 588 | return fmt.Errorf("Dec.GobDecode: no data") |
| 589 | } |
| 590 | b := buf[len(buf)-1] |
| 591 | if b != decGobVersion { |
| 592 | return fmt.Errorf("Dec.GobDecode: encoding version %d not supported", b) |
| 593 | } |
| 594 | l := len(buf) - scaleSize - 1 |
| 595 | err := z.UnscaledBig().GobDecode(buf[:l]) |
| 596 | if err != nil { |
| 597 | return err |
| 598 | } |
| 599 | z.SetScale(scale(buf[l : l+scaleSize])) |
| 600 | return nil |
| 601 | } |
| 602 | |
| 603 | // MarshalText implements the encoding.TextMarshaler interface. |
| 604 | func (x *Dec) MarshalText() ([]byte, error) { |
| 605 | return []byte(x.String()), nil |
| 606 | } |
| 607 | |
| 608 | // UnmarshalText implements the encoding.TextUnmarshaler interface. |
| 609 | func (z *Dec) UnmarshalText(data []byte) error { |
| 610 | _, ok := z.SetString(string(data)) |
| 611 | if !ok { |
| 612 | return fmt.Errorf("invalid inf.Dec") |
| 613 | } |
| 614 | return nil |
| 615 | } |