blob: 0e2191b8ada36129be8a0be7b9a84bcd79a21add [file] [log] [blame]
Matthias Andreas Benkard832a54e2019-01-29 09:27:38 +01001// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors. All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10// * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12// * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16// * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32/*
33Package proto converts data structures to and from the wire format of
34protocol buffers. It works in concert with the Go source code generated
35for .proto files by the protocol compiler.
36
37A summary of the properties of the protocol buffer interface
38for a protocol buffer variable v:
39
40 - Names are turned from camel_case to CamelCase for export.
41 - There are no methods on v to set fields; just treat
42 them as structure fields.
43 - There are getters that return a field's value if set,
44 and return the field's default value if unset.
45 The getters work even if the receiver is a nil message.
46 - The zero value for a struct is its correct initialization state.
47 All desired fields must be set before marshaling.
48 - A Reset() method will restore a protobuf struct to its zero state.
49 - Non-repeated fields are pointers to the values; nil means unset.
50 That is, optional or required field int32 f becomes F *int32.
51 - Repeated fields are slices.
52 - Helper functions are available to aid the setting of fields.
53 msg.Foo = proto.String("hello") // set field
54 - Constants are defined to hold the default values of all fields that
55 have them. They have the form Default_StructName_FieldName.
56 Because the getter methods handle defaulted values,
57 direct use of these constants should be rare.
58 - Enums are given type names and maps from names to values.
59 Enum values are prefixed by the enclosing message's name, or by the
60 enum's type name if it is a top-level enum. Enum types have a String
61 method, and a Enum method to assist in message construction.
62 - Nested messages, groups and enums have type names prefixed with the name of
63 the surrounding message type.
64 - Extensions are given descriptor names that start with E_,
65 followed by an underscore-delimited list of the nested messages
66 that contain it (if any) followed by the CamelCased name of the
67 extension field itself. HasExtension, ClearExtension, GetExtension
68 and SetExtension are functions for manipulating extensions.
69 - Oneof field sets are given a single field in their message,
70 with distinguished wrapper types for each possible field value.
71 - Marshal and Unmarshal are functions to encode and decode the wire format.
72
73When the .proto file specifies `syntax="proto3"`, there are some differences:
74
75 - Non-repeated fields of non-message type are values instead of pointers.
76 - Enum types do not get an Enum method.
77
78The simplest way to describe this is to see an example.
79Given file test.proto, containing
80
81 package example;
82
83 enum FOO { X = 17; }
84
85 message Test {
86 required string label = 1;
87 optional int32 type = 2 [default=77];
88 repeated int64 reps = 3;
89 optional group OptionalGroup = 4 {
90 required string RequiredField = 5;
91 }
92 oneof union {
93 int32 number = 6;
94 string name = 7;
95 }
96 }
97
98The resulting file, test.pb.go, is:
99
100 package example
101
102 import proto "github.com/golang/protobuf/proto"
103 import math "math"
104
105 type FOO int32
106 const (
107 FOO_X FOO = 17
108 )
109 var FOO_name = map[int32]string{
110 17: "X",
111 }
112 var FOO_value = map[string]int32{
113 "X": 17,
114 }
115
116 func (x FOO) Enum() *FOO {
117 p := new(FOO)
118 *p = x
119 return p
120 }
121 func (x FOO) String() string {
122 return proto.EnumName(FOO_name, int32(x))
123 }
124 func (x *FOO) UnmarshalJSON(data []byte) error {
125 value, err := proto.UnmarshalJSONEnum(FOO_value, data)
126 if err != nil {
127 return err
128 }
129 *x = FOO(value)
130 return nil
131 }
132
133 type Test struct {
134 Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
135 Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
136 Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
137 Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
138 // Types that are valid to be assigned to Union:
139 // *Test_Number
140 // *Test_Name
141 Union isTest_Union `protobuf_oneof:"union"`
142 XXX_unrecognized []byte `json:"-"`
143 }
144 func (m *Test) Reset() { *m = Test{} }
145 func (m *Test) String() string { return proto.CompactTextString(m) }
146 func (*Test) ProtoMessage() {}
147
148 type isTest_Union interface {
149 isTest_Union()
150 }
151
152 type Test_Number struct {
153 Number int32 `protobuf:"varint,6,opt,name=number"`
154 }
155 type Test_Name struct {
156 Name string `protobuf:"bytes,7,opt,name=name"`
157 }
158
159 func (*Test_Number) isTest_Union() {}
160 func (*Test_Name) isTest_Union() {}
161
162 func (m *Test) GetUnion() isTest_Union {
163 if m != nil {
164 return m.Union
165 }
166 return nil
167 }
168 const Default_Test_Type int32 = 77
169
170 func (m *Test) GetLabel() string {
171 if m != nil && m.Label != nil {
172 return *m.Label
173 }
174 return ""
175 }
176
177 func (m *Test) GetType() int32 {
178 if m != nil && m.Type != nil {
179 return *m.Type
180 }
181 return Default_Test_Type
182 }
183
184 func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
185 if m != nil {
186 return m.Optionalgroup
187 }
188 return nil
189 }
190
191 type Test_OptionalGroup struct {
192 RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
193 }
194 func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} }
195 func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
196
197 func (m *Test_OptionalGroup) GetRequiredField() string {
198 if m != nil && m.RequiredField != nil {
199 return *m.RequiredField
200 }
201 return ""
202 }
203
204 func (m *Test) GetNumber() int32 {
205 if x, ok := m.GetUnion().(*Test_Number); ok {
206 return x.Number
207 }
208 return 0
209 }
210
211 func (m *Test) GetName() string {
212 if x, ok := m.GetUnion().(*Test_Name); ok {
213 return x.Name
214 }
215 return ""
216 }
217
218 func init() {
219 proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
220 }
221
222To create and play with a Test object:
223
224 package main
225
226 import (
227 "log"
228
229 "github.com/golang/protobuf/proto"
230 pb "./example.pb"
231 )
232
233 func main() {
234 test := &pb.Test{
235 Label: proto.String("hello"),
236 Type: proto.Int32(17),
237 Reps: []int64{1, 2, 3},
238 Optionalgroup: &pb.Test_OptionalGroup{
239 RequiredField: proto.String("good bye"),
240 },
241 Union: &pb.Test_Name{"fred"},
242 }
243 data, err := proto.Marshal(test)
244 if err != nil {
245 log.Fatal("marshaling error: ", err)
246 }
247 newTest := &pb.Test{}
248 err = proto.Unmarshal(data, newTest)
249 if err != nil {
250 log.Fatal("unmarshaling error: ", err)
251 }
252 // Now test and newTest contain the same data.
253 if test.GetLabel() != newTest.GetLabel() {
254 log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
255 }
256 // Use a type switch to determine which oneof was set.
257 switch u := test.Union.(type) {
258 case *pb.Test_Number: // u.Number contains the number.
259 case *pb.Test_Name: // u.Name contains the string.
260 }
261 // etc.
262 }
263*/
264package proto
265
266import (
267 "encoding/json"
268 "errors"
269 "fmt"
270 "log"
271 "reflect"
272 "sort"
273 "strconv"
274 "sync"
275)
276
277var errInvalidUTF8 = errors.New("proto: invalid UTF-8 string")
278
279// Message is implemented by generated protocol buffer messages.
280type Message interface {
281 Reset()
282 String() string
283 ProtoMessage()
284}
285
286// Stats records allocation details about the protocol buffer encoders
287// and decoders. Useful for tuning the library itself.
288type Stats struct {
289 Emalloc uint64 // mallocs in encode
290 Dmalloc uint64 // mallocs in decode
291 Encode uint64 // number of encodes
292 Decode uint64 // number of decodes
293 Chit uint64 // number of cache hits
294 Cmiss uint64 // number of cache misses
295 Size uint64 // number of sizes
296}
297
298// Set to true to enable stats collection.
299const collectStats = false
300
301var stats Stats
302
303// GetStats returns a copy of the global Stats structure.
304func GetStats() Stats { return stats }
305
306// A Buffer is a buffer manager for marshaling and unmarshaling
307// protocol buffers. It may be reused between invocations to
308// reduce memory usage. It is not necessary to use a Buffer;
309// the global functions Marshal and Unmarshal create a
310// temporary Buffer and are fine for most applications.
311type Buffer struct {
312 buf []byte // encode/decode byte stream
313 index int // read point
314
315 deterministic bool
316}
317
318// NewBuffer allocates a new Buffer and initializes its internal data to
319// the contents of the argument slice.
320func NewBuffer(e []byte) *Buffer {
321 return &Buffer{buf: e}
322}
323
324// Reset resets the Buffer, ready for marshaling a new protocol buffer.
325func (p *Buffer) Reset() {
326 p.buf = p.buf[0:0] // for reading/writing
327 p.index = 0 // for reading
328}
329
330// SetBuf replaces the internal buffer with the slice,
331// ready for unmarshaling the contents of the slice.
332func (p *Buffer) SetBuf(s []byte) {
333 p.buf = s
334 p.index = 0
335}
336
337// Bytes returns the contents of the Buffer.
338func (p *Buffer) Bytes() []byte { return p.buf }
339
340// SetDeterministic sets whether to use deterministic serialization.
341//
342// Deterministic serialization guarantees that for a given binary, equal
343// messages will always be serialized to the same bytes. This implies:
344//
345// - Repeated serialization of a message will return the same bytes.
346// - Different processes of the same binary (which may be executing on
347// different machines) will serialize equal messages to the same bytes.
348//
349// Note that the deterministic serialization is NOT canonical across
350// languages. It is not guaranteed to remain stable over time. It is unstable
351// across different builds with schema changes due to unknown fields.
352// Users who need canonical serialization (e.g., persistent storage in a
353// canonical form, fingerprinting, etc.) should define their own
354// canonicalization specification and implement their own serializer rather
355// than relying on this API.
356//
357// If deterministic serialization is requested, map entries will be sorted
358// by keys in lexographical order. This is an implementation detail and
359// subject to change.
360func (p *Buffer) SetDeterministic(deterministic bool) {
361 p.deterministic = deterministic
362}
363
364/*
365 * Helper routines for simplifying the creation of optional fields of basic type.
366 */
367
368// Bool is a helper routine that allocates a new bool value
369// to store v and returns a pointer to it.
370func Bool(v bool) *bool {
371 return &v
372}
373
374// Int32 is a helper routine that allocates a new int32 value
375// to store v and returns a pointer to it.
376func Int32(v int32) *int32 {
377 return &v
378}
379
380// Int is a helper routine that allocates a new int32 value
381// to store v and returns a pointer to it, but unlike Int32
382// its argument value is an int.
383func Int(v int) *int32 {
384 p := new(int32)
385 *p = int32(v)
386 return p
387}
388
389// Int64 is a helper routine that allocates a new int64 value
390// to store v and returns a pointer to it.
391func Int64(v int64) *int64 {
392 return &v
393}
394
395// Float32 is a helper routine that allocates a new float32 value
396// to store v and returns a pointer to it.
397func Float32(v float32) *float32 {
398 return &v
399}
400
401// Float64 is a helper routine that allocates a new float64 value
402// to store v and returns a pointer to it.
403func Float64(v float64) *float64 {
404 return &v
405}
406
407// Uint32 is a helper routine that allocates a new uint32 value
408// to store v and returns a pointer to it.
409func Uint32(v uint32) *uint32 {
410 return &v
411}
412
413// Uint64 is a helper routine that allocates a new uint64 value
414// to store v and returns a pointer to it.
415func Uint64(v uint64) *uint64 {
416 return &v
417}
418
419// String is a helper routine that allocates a new string value
420// to store v and returns a pointer to it.
421func String(v string) *string {
422 return &v
423}
424
425// EnumName is a helper function to simplify printing protocol buffer enums
426// by name. Given an enum map and a value, it returns a useful string.
427func EnumName(m map[int32]string, v int32) string {
428 s, ok := m[v]
429 if ok {
430 return s
431 }
432 return strconv.Itoa(int(v))
433}
434
435// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
436// from their JSON-encoded representation. Given a map from the enum's symbolic
437// names to its int values, and a byte buffer containing the JSON-encoded
438// value, it returns an int32 that can be cast to the enum type by the caller.
439//
440// The function can deal with both JSON representations, numeric and symbolic.
441func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
442 if data[0] == '"' {
443 // New style: enums are strings.
444 var repr string
445 if err := json.Unmarshal(data, &repr); err != nil {
446 return -1, err
447 }
448 val, ok := m[repr]
449 if !ok {
450 return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
451 }
452 return val, nil
453 }
454 // Old style: enums are ints.
455 var val int32
456 if err := json.Unmarshal(data, &val); err != nil {
457 return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
458 }
459 return val, nil
460}
461
462// DebugPrint dumps the encoded data in b in a debugging format with a header
463// including the string s. Used in testing but made available for general debugging.
464func (p *Buffer) DebugPrint(s string, b []byte) {
465 var u uint64
466
467 obuf := p.buf
468 index := p.index
469 p.buf = b
470 p.index = 0
471 depth := 0
472
473 fmt.Printf("\n--- %s ---\n", s)
474
475out:
476 for {
477 for i := 0; i < depth; i++ {
478 fmt.Print(" ")
479 }
480
481 index := p.index
482 if index == len(p.buf) {
483 break
484 }
485
486 op, err := p.DecodeVarint()
487 if err != nil {
488 fmt.Printf("%3d: fetching op err %v\n", index, err)
489 break out
490 }
491 tag := op >> 3
492 wire := op & 7
493
494 switch wire {
495 default:
496 fmt.Printf("%3d: t=%3d unknown wire=%d\n",
497 index, tag, wire)
498 break out
499
500 case WireBytes:
501 var r []byte
502
503 r, err = p.DecodeRawBytes(false)
504 if err != nil {
505 break out
506 }
507 fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
508 if len(r) <= 6 {
509 for i := 0; i < len(r); i++ {
510 fmt.Printf(" %.2x", r[i])
511 }
512 } else {
513 for i := 0; i < 3; i++ {
514 fmt.Printf(" %.2x", r[i])
515 }
516 fmt.Printf(" ..")
517 for i := len(r) - 3; i < len(r); i++ {
518 fmt.Printf(" %.2x", r[i])
519 }
520 }
521 fmt.Printf("\n")
522
523 case WireFixed32:
524 u, err = p.DecodeFixed32()
525 if err != nil {
526 fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
527 break out
528 }
529 fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
530
531 case WireFixed64:
532 u, err = p.DecodeFixed64()
533 if err != nil {
534 fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
535 break out
536 }
537 fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
538
539 case WireVarint:
540 u, err = p.DecodeVarint()
541 if err != nil {
542 fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
543 break out
544 }
545 fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
546
547 case WireStartGroup:
548 fmt.Printf("%3d: t=%3d start\n", index, tag)
549 depth++
550
551 case WireEndGroup:
552 depth--
553 fmt.Printf("%3d: t=%3d end\n", index, tag)
554 }
555 }
556
557 if depth != 0 {
558 fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
559 }
560 fmt.Printf("\n")
561
562 p.buf = obuf
563 p.index = index
564}
565
566// SetDefaults sets unset protocol buffer fields to their default values.
567// It only modifies fields that are both unset and have defined defaults.
568// It recursively sets default values in any non-nil sub-messages.
569func SetDefaults(pb Message) {
570 setDefaults(reflect.ValueOf(pb), true, false)
571}
572
573// v is a pointer to a struct.
574func setDefaults(v reflect.Value, recur, zeros bool) {
575 v = v.Elem()
576
577 defaultMu.RLock()
578 dm, ok := defaults[v.Type()]
579 defaultMu.RUnlock()
580 if !ok {
581 dm = buildDefaultMessage(v.Type())
582 defaultMu.Lock()
583 defaults[v.Type()] = dm
584 defaultMu.Unlock()
585 }
586
587 for _, sf := range dm.scalars {
588 f := v.Field(sf.index)
589 if !f.IsNil() {
590 // field already set
591 continue
592 }
593 dv := sf.value
594 if dv == nil && !zeros {
595 // no explicit default, and don't want to set zeros
596 continue
597 }
598 fptr := f.Addr().Interface() // **T
599 // TODO: Consider batching the allocations we do here.
600 switch sf.kind {
601 case reflect.Bool:
602 b := new(bool)
603 if dv != nil {
604 *b = dv.(bool)
605 }
606 *(fptr.(**bool)) = b
607 case reflect.Float32:
608 f := new(float32)
609 if dv != nil {
610 *f = dv.(float32)
611 }
612 *(fptr.(**float32)) = f
613 case reflect.Float64:
614 f := new(float64)
615 if dv != nil {
616 *f = dv.(float64)
617 }
618 *(fptr.(**float64)) = f
619 case reflect.Int32:
620 // might be an enum
621 if ft := f.Type(); ft != int32PtrType {
622 // enum
623 f.Set(reflect.New(ft.Elem()))
624 if dv != nil {
625 f.Elem().SetInt(int64(dv.(int32)))
626 }
627 } else {
628 // int32 field
629 i := new(int32)
630 if dv != nil {
631 *i = dv.(int32)
632 }
633 *(fptr.(**int32)) = i
634 }
635 case reflect.Int64:
636 i := new(int64)
637 if dv != nil {
638 *i = dv.(int64)
639 }
640 *(fptr.(**int64)) = i
641 case reflect.String:
642 s := new(string)
643 if dv != nil {
644 *s = dv.(string)
645 }
646 *(fptr.(**string)) = s
647 case reflect.Uint8:
648 // exceptional case: []byte
649 var b []byte
650 if dv != nil {
651 db := dv.([]byte)
652 b = make([]byte, len(db))
653 copy(b, db)
654 } else {
655 b = []byte{}
656 }
657 *(fptr.(*[]byte)) = b
658 case reflect.Uint32:
659 u := new(uint32)
660 if dv != nil {
661 *u = dv.(uint32)
662 }
663 *(fptr.(**uint32)) = u
664 case reflect.Uint64:
665 u := new(uint64)
666 if dv != nil {
667 *u = dv.(uint64)
668 }
669 *(fptr.(**uint64)) = u
670 default:
671 log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
672 }
673 }
674
675 for _, ni := range dm.nested {
676 f := v.Field(ni)
677 // f is *T or []*T or map[T]*T
678 switch f.Kind() {
679 case reflect.Ptr:
680 if f.IsNil() {
681 continue
682 }
683 setDefaults(f, recur, zeros)
684
685 case reflect.Slice:
686 for i := 0; i < f.Len(); i++ {
687 e := f.Index(i)
688 if e.IsNil() {
689 continue
690 }
691 setDefaults(e, recur, zeros)
692 }
693
694 case reflect.Map:
695 for _, k := range f.MapKeys() {
696 e := f.MapIndex(k)
697 if e.IsNil() {
698 continue
699 }
700 setDefaults(e, recur, zeros)
701 }
702 }
703 }
704}
705
706var (
707 // defaults maps a protocol buffer struct type to a slice of the fields,
708 // with its scalar fields set to their proto-declared non-zero default values.
709 defaultMu sync.RWMutex
710 defaults = make(map[reflect.Type]defaultMessage)
711
712 int32PtrType = reflect.TypeOf((*int32)(nil))
713)
714
715// defaultMessage represents information about the default values of a message.
716type defaultMessage struct {
717 scalars []scalarField
718 nested []int // struct field index of nested messages
719}
720
721type scalarField struct {
722 index int // struct field index
723 kind reflect.Kind // element type (the T in *T or []T)
724 value interface{} // the proto-declared default value, or nil
725}
726
727// t is a struct type.
728func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
729 sprop := GetProperties(t)
730 for _, prop := range sprop.Prop {
731 fi, ok := sprop.decoderTags.get(prop.Tag)
732 if !ok {
733 // XXX_unrecognized
734 continue
735 }
736 ft := t.Field(fi).Type
737
738 sf, nested, err := fieldDefault(ft, prop)
739 switch {
740 case err != nil:
741 log.Print(err)
742 case nested:
743 dm.nested = append(dm.nested, fi)
744 case sf != nil:
745 sf.index = fi
746 dm.scalars = append(dm.scalars, *sf)
747 }
748 }
749
750 return dm
751}
752
753// fieldDefault returns the scalarField for field type ft.
754// sf will be nil if the field can not have a default.
755// nestedMessage will be true if this is a nested message.
756// Note that sf.index is not set on return.
757func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
758 var canHaveDefault bool
759 switch ft.Kind() {
760 case reflect.Ptr:
761 if ft.Elem().Kind() == reflect.Struct {
762 nestedMessage = true
763 } else {
764 canHaveDefault = true // proto2 scalar field
765 }
766
767 case reflect.Slice:
768 switch ft.Elem().Kind() {
769 case reflect.Ptr:
770 nestedMessage = true // repeated message
771 case reflect.Uint8:
772 canHaveDefault = true // bytes field
773 }
774
775 case reflect.Map:
776 if ft.Elem().Kind() == reflect.Ptr {
777 nestedMessage = true // map with message values
778 }
779 }
780
781 if !canHaveDefault {
782 if nestedMessage {
783 return nil, true, nil
784 }
785 return nil, false, nil
786 }
787
788 // We now know that ft is a pointer or slice.
789 sf = &scalarField{kind: ft.Elem().Kind()}
790
791 // scalar fields without defaults
792 if !prop.HasDefault {
793 return sf, false, nil
794 }
795
796 // a scalar field: either *T or []byte
797 switch ft.Elem().Kind() {
798 case reflect.Bool:
799 x, err := strconv.ParseBool(prop.Default)
800 if err != nil {
801 return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
802 }
803 sf.value = x
804 case reflect.Float32:
805 x, err := strconv.ParseFloat(prop.Default, 32)
806 if err != nil {
807 return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
808 }
809 sf.value = float32(x)
810 case reflect.Float64:
811 x, err := strconv.ParseFloat(prop.Default, 64)
812 if err != nil {
813 return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
814 }
815 sf.value = x
816 case reflect.Int32:
817 x, err := strconv.ParseInt(prop.Default, 10, 32)
818 if err != nil {
819 return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
820 }
821 sf.value = int32(x)
822 case reflect.Int64:
823 x, err := strconv.ParseInt(prop.Default, 10, 64)
824 if err != nil {
825 return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
826 }
827 sf.value = x
828 case reflect.String:
829 sf.value = prop.Default
830 case reflect.Uint8:
831 // []byte (not *uint8)
832 sf.value = []byte(prop.Default)
833 case reflect.Uint32:
834 x, err := strconv.ParseUint(prop.Default, 10, 32)
835 if err != nil {
836 return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
837 }
838 sf.value = uint32(x)
839 case reflect.Uint64:
840 x, err := strconv.ParseUint(prop.Default, 10, 64)
841 if err != nil {
842 return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
843 }
844 sf.value = x
845 default:
846 return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
847 }
848
849 return sf, false, nil
850}
851
852// mapKeys returns a sort.Interface to be used for sorting the map keys.
853// Map fields may have key types of non-float scalars, strings and enums.
854func mapKeys(vs []reflect.Value) sort.Interface {
855 s := mapKeySorter{vs: vs}
856
857 // Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
858 if len(vs) == 0 {
859 return s
860 }
861 switch vs[0].Kind() {
862 case reflect.Int32, reflect.Int64:
863 s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
864 case reflect.Uint32, reflect.Uint64:
865 s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
866 case reflect.Bool:
867 s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
868 case reflect.String:
869 s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
870 default:
871 panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
872 }
873
874 return s
875}
876
877type mapKeySorter struct {
878 vs []reflect.Value
879 less func(a, b reflect.Value) bool
880}
881
882func (s mapKeySorter) Len() int { return len(s.vs) }
883func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
884func (s mapKeySorter) Less(i, j int) bool {
885 return s.less(s.vs[i], s.vs[j])
886}
887
888// isProto3Zero reports whether v is a zero proto3 value.
889func isProto3Zero(v reflect.Value) bool {
890 switch v.Kind() {
891 case reflect.Bool:
892 return !v.Bool()
893 case reflect.Int32, reflect.Int64:
894 return v.Int() == 0
895 case reflect.Uint32, reflect.Uint64:
896 return v.Uint() == 0
897 case reflect.Float32, reflect.Float64:
898 return v.Float() == 0
899 case reflect.String:
900 return v.String() == ""
901 }
902 return false
903}
904
905// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
906// to assert that that code is compatible with this version of the proto package.
907const ProtoPackageIsVersion2 = true
908
909// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
910// to assert that that code is compatible with this version of the proto package.
911const ProtoPackageIsVersion1 = true
912
913// InternalMessageInfo is a type used internally by generated .pb.go files.
914// This type is not intended to be used by non-generated code.
915// This type is not subject to any compatibility guarantee.
916type InternalMessageInfo struct {
917 marshal *marshalInfo
918 unmarshal *unmarshalInfo
919 merge *mergeInfo
920 discard *discardInfo
921}