blob: c98d73da49ea269a2e48f050389b45488d7ab65b [file] [log] [blame]
Matthias Andreas Benkard832a54e2019-01-29 09:27:38 +01001// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors. All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10// * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12// * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16// * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32/*
33Package proto converts data structures to and from the wire format of
34protocol buffers. It works in concert with the Go source code generated
35for .proto files by the protocol compiler.
36
37A summary of the properties of the protocol buffer interface
38for a protocol buffer variable v:
39
40 - Names are turned from camel_case to CamelCase for export.
41 - There are no methods on v to set fields; just treat
42 them as structure fields.
43 - There are getters that return a field's value if set,
44 and return the field's default value if unset.
45 The getters work even if the receiver is a nil message.
46 - The zero value for a struct is its correct initialization state.
47 All desired fields must be set before marshaling.
48 - A Reset() method will restore a protobuf struct to its zero state.
49 - Non-repeated fields are pointers to the values; nil means unset.
50 That is, optional or required field int32 f becomes F *int32.
51 - Repeated fields are slices.
52 - Helper functions are available to aid the setting of fields.
53 msg.Foo = proto.String("hello") // set field
54 - Constants are defined to hold the default values of all fields that
55 have them. They have the form Default_StructName_FieldName.
56 Because the getter methods handle defaulted values,
57 direct use of these constants should be rare.
58 - Enums are given type names and maps from names to values.
59 Enum values are prefixed by the enclosing message's name, or by the
60 enum's type name if it is a top-level enum. Enum types have a String
61 method, and a Enum method to assist in message construction.
62 - Nested messages, groups and enums have type names prefixed with the name of
63 the surrounding message type.
64 - Extensions are given descriptor names that start with E_,
65 followed by an underscore-delimited list of the nested messages
66 that contain it (if any) followed by the CamelCased name of the
67 extension field itself. HasExtension, ClearExtension, GetExtension
68 and SetExtension are functions for manipulating extensions.
69 - Oneof field sets are given a single field in their message,
70 with distinguished wrapper types for each possible field value.
71 - Marshal and Unmarshal are functions to encode and decode the wire format.
72
73When the .proto file specifies `syntax="proto3"`, there are some differences:
74
75 - Non-repeated fields of non-message type are values instead of pointers.
76 - Enum types do not get an Enum method.
77
78The simplest way to describe this is to see an example.
79Given file test.proto, containing
80
81 package example;
82
83 enum FOO { X = 17; }
84
85 message Test {
86 required string label = 1;
87 optional int32 type = 2 [default=77];
88 repeated int64 reps = 3;
89 optional group OptionalGroup = 4 {
90 required string RequiredField = 5;
91 }
92 oneof union {
93 int32 number = 6;
94 string name = 7;
95 }
96 }
97
98The resulting file, test.pb.go, is:
99
100 package example
101
102 import proto "github.com/gogo/protobuf/proto"
103 import math "math"
104
105 type FOO int32
106 const (
107 FOO_X FOO = 17
108 )
109 var FOO_name = map[int32]string{
110 17: "X",
111 }
112 var FOO_value = map[string]int32{
113 "X": 17,
114 }
115
116 func (x FOO) Enum() *FOO {
117 p := new(FOO)
118 *p = x
119 return p
120 }
121 func (x FOO) String() string {
122 return proto.EnumName(FOO_name, int32(x))
123 }
124 func (x *FOO) UnmarshalJSON(data []byte) error {
125 value, err := proto.UnmarshalJSONEnum(FOO_value, data)
126 if err != nil {
127 return err
128 }
129 *x = FOO(value)
130 return nil
131 }
132
133 type Test struct {
134 Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
135 Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
136 Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
137 Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
138 // Types that are valid to be assigned to Union:
139 // *Test_Number
140 // *Test_Name
141 Union isTest_Union `protobuf_oneof:"union"`
142 XXX_unrecognized []byte `json:"-"`
143 }
144 func (m *Test) Reset() { *m = Test{} }
145 func (m *Test) String() string { return proto.CompactTextString(m) }
146 func (*Test) ProtoMessage() {}
147
148 type isTest_Union interface {
149 isTest_Union()
150 }
151
152 type Test_Number struct {
153 Number int32 `protobuf:"varint,6,opt,name=number"`
154 }
155 type Test_Name struct {
156 Name string `protobuf:"bytes,7,opt,name=name"`
157 }
158
159 func (*Test_Number) isTest_Union() {}
160 func (*Test_Name) isTest_Union() {}
161
162 func (m *Test) GetUnion() isTest_Union {
163 if m != nil {
164 return m.Union
165 }
166 return nil
167 }
168 const Default_Test_Type int32 = 77
169
170 func (m *Test) GetLabel() string {
171 if m != nil && m.Label != nil {
172 return *m.Label
173 }
174 return ""
175 }
176
177 func (m *Test) GetType() int32 {
178 if m != nil && m.Type != nil {
179 return *m.Type
180 }
181 return Default_Test_Type
182 }
183
184 func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
185 if m != nil {
186 return m.Optionalgroup
187 }
188 return nil
189 }
190
191 type Test_OptionalGroup struct {
192 RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
193 }
194 func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} }
195 func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
196
197 func (m *Test_OptionalGroup) GetRequiredField() string {
198 if m != nil && m.RequiredField != nil {
199 return *m.RequiredField
200 }
201 return ""
202 }
203
204 func (m *Test) GetNumber() int32 {
205 if x, ok := m.GetUnion().(*Test_Number); ok {
206 return x.Number
207 }
208 return 0
209 }
210
211 func (m *Test) GetName() string {
212 if x, ok := m.GetUnion().(*Test_Name); ok {
213 return x.Name
214 }
215 return ""
216 }
217
218 func init() {
219 proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
220 }
221
222To create and play with a Test object:
223
224 package main
225
226 import (
227 "log"
228
229 "github.com/gogo/protobuf/proto"
230 pb "./example.pb"
231 )
232
233 func main() {
234 test := &pb.Test{
235 Label: proto.String("hello"),
236 Type: proto.Int32(17),
237 Reps: []int64{1, 2, 3},
238 Optionalgroup: &pb.Test_OptionalGroup{
239 RequiredField: proto.String("good bye"),
240 },
241 Union: &pb.Test_Name{"fred"},
242 }
243 data, err := proto.Marshal(test)
244 if err != nil {
245 log.Fatal("marshaling error: ", err)
246 }
247 newTest := &pb.Test{}
248 err = proto.Unmarshal(data, newTest)
249 if err != nil {
250 log.Fatal("unmarshaling error: ", err)
251 }
252 // Now test and newTest contain the same data.
253 if test.GetLabel() != newTest.GetLabel() {
254 log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
255 }
256 // Use a type switch to determine which oneof was set.
257 switch u := test.Union.(type) {
258 case *pb.Test_Number: // u.Number contains the number.
259 case *pb.Test_Name: // u.Name contains the string.
260 }
261 // etc.
262 }
263*/
264package proto
265
266import (
267 "encoding/json"
268 "fmt"
269 "log"
270 "reflect"
271 "sort"
272 "strconv"
273 "sync"
274)
275
276// Message is implemented by generated protocol buffer messages.
277type Message interface {
278 Reset()
279 String() string
280 ProtoMessage()
281}
282
283// Stats records allocation details about the protocol buffer encoders
284// and decoders. Useful for tuning the library itself.
285type Stats struct {
286 Emalloc uint64 // mallocs in encode
287 Dmalloc uint64 // mallocs in decode
288 Encode uint64 // number of encodes
289 Decode uint64 // number of decodes
290 Chit uint64 // number of cache hits
291 Cmiss uint64 // number of cache misses
292 Size uint64 // number of sizes
293}
294
295// Set to true to enable stats collection.
296const collectStats = false
297
298var stats Stats
299
300// GetStats returns a copy of the global Stats structure.
301func GetStats() Stats { return stats }
302
303// A Buffer is a buffer manager for marshaling and unmarshaling
304// protocol buffers. It may be reused between invocations to
305// reduce memory usage. It is not necessary to use a Buffer;
306// the global functions Marshal and Unmarshal create a
307// temporary Buffer and are fine for most applications.
308type Buffer struct {
309 buf []byte // encode/decode byte stream
310 index int // read point
311
312 // pools of basic types to amortize allocation.
313 bools []bool
314 uint32s []uint32
315 uint64s []uint64
316
317 // extra pools, only used with pointer_reflect.go
318 int32s []int32
319 int64s []int64
320 float32s []float32
321 float64s []float64
322}
323
324// NewBuffer allocates a new Buffer and initializes its internal data to
325// the contents of the argument slice.
326func NewBuffer(e []byte) *Buffer {
327 return &Buffer{buf: e}
328}
329
330// Reset resets the Buffer, ready for marshaling a new protocol buffer.
331func (p *Buffer) Reset() {
332 p.buf = p.buf[0:0] // for reading/writing
333 p.index = 0 // for reading
334}
335
336// SetBuf replaces the internal buffer with the slice,
337// ready for unmarshaling the contents of the slice.
338func (p *Buffer) SetBuf(s []byte) {
339 p.buf = s
340 p.index = 0
341}
342
343// Bytes returns the contents of the Buffer.
344func (p *Buffer) Bytes() []byte { return p.buf }
345
346/*
347 * Helper routines for simplifying the creation of optional fields of basic type.
348 */
349
350// Bool is a helper routine that allocates a new bool value
351// to store v and returns a pointer to it.
352func Bool(v bool) *bool {
353 return &v
354}
355
356// Int32 is a helper routine that allocates a new int32 value
357// to store v and returns a pointer to it.
358func Int32(v int32) *int32 {
359 return &v
360}
361
362// Int is a helper routine that allocates a new int32 value
363// to store v and returns a pointer to it, but unlike Int32
364// its argument value is an int.
365func Int(v int) *int32 {
366 p := new(int32)
367 *p = int32(v)
368 return p
369}
370
371// Int64 is a helper routine that allocates a new int64 value
372// to store v and returns a pointer to it.
373func Int64(v int64) *int64 {
374 return &v
375}
376
377// Float32 is a helper routine that allocates a new float32 value
378// to store v and returns a pointer to it.
379func Float32(v float32) *float32 {
380 return &v
381}
382
383// Float64 is a helper routine that allocates a new float64 value
384// to store v and returns a pointer to it.
385func Float64(v float64) *float64 {
386 return &v
387}
388
389// Uint32 is a helper routine that allocates a new uint32 value
390// to store v and returns a pointer to it.
391func Uint32(v uint32) *uint32 {
392 return &v
393}
394
395// Uint64 is a helper routine that allocates a new uint64 value
396// to store v and returns a pointer to it.
397func Uint64(v uint64) *uint64 {
398 return &v
399}
400
401// String is a helper routine that allocates a new string value
402// to store v and returns a pointer to it.
403func String(v string) *string {
404 return &v
405}
406
407// EnumName is a helper function to simplify printing protocol buffer enums
408// by name. Given an enum map and a value, it returns a useful string.
409func EnumName(m map[int32]string, v int32) string {
410 s, ok := m[v]
411 if ok {
412 return s
413 }
414 return strconv.Itoa(int(v))
415}
416
417// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
418// from their JSON-encoded representation. Given a map from the enum's symbolic
419// names to its int values, and a byte buffer containing the JSON-encoded
420// value, it returns an int32 that can be cast to the enum type by the caller.
421//
422// The function can deal with both JSON representations, numeric and symbolic.
423func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
424 if data[0] == '"' {
425 // New style: enums are strings.
426 var repr string
427 if err := json.Unmarshal(data, &repr); err != nil {
428 return -1, err
429 }
430 val, ok := m[repr]
431 if !ok {
432 return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
433 }
434 return val, nil
435 }
436 // Old style: enums are ints.
437 var val int32
438 if err := json.Unmarshal(data, &val); err != nil {
439 return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
440 }
441 return val, nil
442}
443
444// DebugPrint dumps the encoded data in b in a debugging format with a header
445// including the string s. Used in testing but made available for general debugging.
446func (p *Buffer) DebugPrint(s string, b []byte) {
447 var u uint64
448
449 obuf := p.buf
450 sindex := p.index
451 p.buf = b
452 p.index = 0
453 depth := 0
454
455 fmt.Printf("\n--- %s ---\n", s)
456
457out:
458 for {
459 for i := 0; i < depth; i++ {
460 fmt.Print(" ")
461 }
462
463 index := p.index
464 if index == len(p.buf) {
465 break
466 }
467
468 op, err := p.DecodeVarint()
469 if err != nil {
470 fmt.Printf("%3d: fetching op err %v\n", index, err)
471 break out
472 }
473 tag := op >> 3
474 wire := op & 7
475
476 switch wire {
477 default:
478 fmt.Printf("%3d: t=%3d unknown wire=%d\n",
479 index, tag, wire)
480 break out
481
482 case WireBytes:
483 var r []byte
484
485 r, err = p.DecodeRawBytes(false)
486 if err != nil {
487 break out
488 }
489 fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
490 if len(r) <= 6 {
491 for i := 0; i < len(r); i++ {
492 fmt.Printf(" %.2x", r[i])
493 }
494 } else {
495 for i := 0; i < 3; i++ {
496 fmt.Printf(" %.2x", r[i])
497 }
498 fmt.Printf(" ..")
499 for i := len(r) - 3; i < len(r); i++ {
500 fmt.Printf(" %.2x", r[i])
501 }
502 }
503 fmt.Printf("\n")
504
505 case WireFixed32:
506 u, err = p.DecodeFixed32()
507 if err != nil {
508 fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
509 break out
510 }
511 fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
512
513 case WireFixed64:
514 u, err = p.DecodeFixed64()
515 if err != nil {
516 fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
517 break out
518 }
519 fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
520
521 case WireVarint:
522 u, err = p.DecodeVarint()
523 if err != nil {
524 fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
525 break out
526 }
527 fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
528
529 case WireStartGroup:
530 fmt.Printf("%3d: t=%3d start\n", index, tag)
531 depth++
532
533 case WireEndGroup:
534 depth--
535 fmt.Printf("%3d: t=%3d end\n", index, tag)
536 }
537 }
538
539 if depth != 0 {
540 fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
541 }
542 fmt.Printf("\n")
543
544 p.buf = obuf
545 p.index = sindex
546}
547
548// SetDefaults sets unset protocol buffer fields to their default values.
549// It only modifies fields that are both unset and have defined defaults.
550// It recursively sets default values in any non-nil sub-messages.
551func SetDefaults(pb Message) {
552 setDefaults(reflect.ValueOf(pb), true, false)
553}
554
555// v is a pointer to a struct.
556func setDefaults(v reflect.Value, recur, zeros bool) {
557 v = v.Elem()
558
559 defaultMu.RLock()
560 dm, ok := defaults[v.Type()]
561 defaultMu.RUnlock()
562 if !ok {
563 dm = buildDefaultMessage(v.Type())
564 defaultMu.Lock()
565 defaults[v.Type()] = dm
566 defaultMu.Unlock()
567 }
568
569 for _, sf := range dm.scalars {
570 f := v.Field(sf.index)
571 if !f.IsNil() {
572 // field already set
573 continue
574 }
575 dv := sf.value
576 if dv == nil && !zeros {
577 // no explicit default, and don't want to set zeros
578 continue
579 }
580 fptr := f.Addr().Interface() // **T
581 // TODO: Consider batching the allocations we do here.
582 switch sf.kind {
583 case reflect.Bool:
584 b := new(bool)
585 if dv != nil {
586 *b = dv.(bool)
587 }
588 *(fptr.(**bool)) = b
589 case reflect.Float32:
590 f := new(float32)
591 if dv != nil {
592 *f = dv.(float32)
593 }
594 *(fptr.(**float32)) = f
595 case reflect.Float64:
596 f := new(float64)
597 if dv != nil {
598 *f = dv.(float64)
599 }
600 *(fptr.(**float64)) = f
601 case reflect.Int32:
602 // might be an enum
603 if ft := f.Type(); ft != int32PtrType {
604 // enum
605 f.Set(reflect.New(ft.Elem()))
606 if dv != nil {
607 f.Elem().SetInt(int64(dv.(int32)))
608 }
609 } else {
610 // int32 field
611 i := new(int32)
612 if dv != nil {
613 *i = dv.(int32)
614 }
615 *(fptr.(**int32)) = i
616 }
617 case reflect.Int64:
618 i := new(int64)
619 if dv != nil {
620 *i = dv.(int64)
621 }
622 *(fptr.(**int64)) = i
623 case reflect.String:
624 s := new(string)
625 if dv != nil {
626 *s = dv.(string)
627 }
628 *(fptr.(**string)) = s
629 case reflect.Uint8:
630 // exceptional case: []byte
631 var b []byte
632 if dv != nil {
633 db := dv.([]byte)
634 b = make([]byte, len(db))
635 copy(b, db)
636 } else {
637 b = []byte{}
638 }
639 *(fptr.(*[]byte)) = b
640 case reflect.Uint32:
641 u := new(uint32)
642 if dv != nil {
643 *u = dv.(uint32)
644 }
645 *(fptr.(**uint32)) = u
646 case reflect.Uint64:
647 u := new(uint64)
648 if dv != nil {
649 *u = dv.(uint64)
650 }
651 *(fptr.(**uint64)) = u
652 default:
653 log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
654 }
655 }
656
657 for _, ni := range dm.nested {
658 f := v.Field(ni)
659 // f is *T or []*T or map[T]*T
660 switch f.Kind() {
661 case reflect.Ptr:
662 if f.IsNil() {
663 continue
664 }
665 setDefaults(f, recur, zeros)
666
667 case reflect.Slice:
668 for i := 0; i < f.Len(); i++ {
669 e := f.Index(i)
670 if e.IsNil() {
671 continue
672 }
673 setDefaults(e, recur, zeros)
674 }
675
676 case reflect.Map:
677 for _, k := range f.MapKeys() {
678 e := f.MapIndex(k)
679 if e.IsNil() {
680 continue
681 }
682 setDefaults(e, recur, zeros)
683 }
684 }
685 }
686}
687
688var (
689 // defaults maps a protocol buffer struct type to a slice of the fields,
690 // with its scalar fields set to their proto-declared non-zero default values.
691 defaultMu sync.RWMutex
692 defaults = make(map[reflect.Type]defaultMessage)
693
694 int32PtrType = reflect.TypeOf((*int32)(nil))
695)
696
697// defaultMessage represents information about the default values of a message.
698type defaultMessage struct {
699 scalars []scalarField
700 nested []int // struct field index of nested messages
701}
702
703type scalarField struct {
704 index int // struct field index
705 kind reflect.Kind // element type (the T in *T or []T)
706 value interface{} // the proto-declared default value, or nil
707}
708
709// t is a struct type.
710func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
711 sprop := GetProperties(t)
712 for _, prop := range sprop.Prop {
713 fi, ok := sprop.decoderTags.get(prop.Tag)
714 if !ok {
715 // XXX_unrecognized
716 continue
717 }
718 ft := t.Field(fi).Type
719
720 sf, nested, err := fieldDefault(ft, prop)
721 switch {
722 case err != nil:
723 log.Print(err)
724 case nested:
725 dm.nested = append(dm.nested, fi)
726 case sf != nil:
727 sf.index = fi
728 dm.scalars = append(dm.scalars, *sf)
729 }
730 }
731
732 return dm
733}
734
735// fieldDefault returns the scalarField for field type ft.
736// sf will be nil if the field can not have a default.
737// nestedMessage will be true if this is a nested message.
738// Note that sf.index is not set on return.
739func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
740 var canHaveDefault bool
741 switch ft.Kind() {
742 case reflect.Ptr:
743 if ft.Elem().Kind() == reflect.Struct {
744 nestedMessage = true
745 } else {
746 canHaveDefault = true // proto2 scalar field
747 }
748
749 case reflect.Slice:
750 switch ft.Elem().Kind() {
751 case reflect.Ptr:
752 nestedMessage = true // repeated message
753 case reflect.Uint8:
754 canHaveDefault = true // bytes field
755 }
756
757 case reflect.Map:
758 if ft.Elem().Kind() == reflect.Ptr {
759 nestedMessage = true // map with message values
760 }
761 }
762
763 if !canHaveDefault {
764 if nestedMessage {
765 return nil, true, nil
766 }
767 return nil, false, nil
768 }
769
770 // We now know that ft is a pointer or slice.
771 sf = &scalarField{kind: ft.Elem().Kind()}
772
773 // scalar fields without defaults
774 if !prop.HasDefault {
775 return sf, false, nil
776 }
777
778 // a scalar field: either *T or []byte
779 switch ft.Elem().Kind() {
780 case reflect.Bool:
781 x, err := strconv.ParseBool(prop.Default)
782 if err != nil {
783 return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
784 }
785 sf.value = x
786 case reflect.Float32:
787 x, err := strconv.ParseFloat(prop.Default, 32)
788 if err != nil {
789 return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
790 }
791 sf.value = float32(x)
792 case reflect.Float64:
793 x, err := strconv.ParseFloat(prop.Default, 64)
794 if err != nil {
795 return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
796 }
797 sf.value = x
798 case reflect.Int32:
799 x, err := strconv.ParseInt(prop.Default, 10, 32)
800 if err != nil {
801 return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
802 }
803 sf.value = int32(x)
804 case reflect.Int64:
805 x, err := strconv.ParseInt(prop.Default, 10, 64)
806 if err != nil {
807 return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
808 }
809 sf.value = x
810 case reflect.String:
811 sf.value = prop.Default
812 case reflect.Uint8:
813 // []byte (not *uint8)
814 sf.value = []byte(prop.Default)
815 case reflect.Uint32:
816 x, err := strconv.ParseUint(prop.Default, 10, 32)
817 if err != nil {
818 return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
819 }
820 sf.value = uint32(x)
821 case reflect.Uint64:
822 x, err := strconv.ParseUint(prop.Default, 10, 64)
823 if err != nil {
824 return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
825 }
826 sf.value = x
827 default:
828 return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
829 }
830
831 return sf, false, nil
832}
833
834// Map fields may have key types of non-float scalars, strings and enums.
835// The easiest way to sort them in some deterministic order is to use fmt.
836// If this turns out to be inefficient we can always consider other options,
837// such as doing a Schwartzian transform.
838
839func mapKeys(vs []reflect.Value) sort.Interface {
840 s := mapKeySorter{
841 vs: vs,
842 // default Less function: textual comparison
843 less: func(a, b reflect.Value) bool {
844 return fmt.Sprint(a.Interface()) < fmt.Sprint(b.Interface())
845 },
846 }
847
848 // Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps;
849 // numeric keys are sorted numerically.
850 if len(vs) == 0 {
851 return s
852 }
853 switch vs[0].Kind() {
854 case reflect.Int32, reflect.Int64:
855 s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
856 case reflect.Uint32, reflect.Uint64:
857 s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
858 }
859
860 return s
861}
862
863type mapKeySorter struct {
864 vs []reflect.Value
865 less func(a, b reflect.Value) bool
866}
867
868func (s mapKeySorter) Len() int { return len(s.vs) }
869func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
870func (s mapKeySorter) Less(i, j int) bool {
871 return s.less(s.vs[i], s.vs[j])
872}
873
874// isProto3Zero reports whether v is a zero proto3 value.
875func isProto3Zero(v reflect.Value) bool {
876 switch v.Kind() {
877 case reflect.Bool:
878 return !v.Bool()
879 case reflect.Int32, reflect.Int64:
880 return v.Int() == 0
881 case reflect.Uint32, reflect.Uint64:
882 return v.Uint() == 0
883 case reflect.Float32, reflect.Float64:
884 return v.Float() == 0
885 case reflect.String:
886 return v.String() == ""
887 }
888 return false
889}
890
891// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
892// to assert that that code is compatible with this version of the proto package.
893const GoGoProtoPackageIsVersion2 = true
894
895// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
896// to assert that that code is compatible with this version of the proto package.
897const GoGoProtoPackageIsVersion1 = true