blob: 58600740266c675a76ec05954ff6ec1ae33228c6 [file] [log] [blame]
Matthias Andreas Benkard832a54e2019-01-29 09:27:38 +01001// Copyright 2013 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4package yaml
5
6import (
7 "bytes"
8 "encoding"
9 "encoding/json"
10 "reflect"
11 "sort"
12 "strings"
13 "sync"
14 "unicode"
15 "unicode/utf8"
16)
17
18// indirect walks down v allocating pointers as needed,
19// until it gets to a non-pointer.
20// if it encounters an Unmarshaler, indirect stops and returns that.
21// if decodingNull is true, indirect stops at the last pointer so it can be set to nil.
22func indirect(v reflect.Value, decodingNull bool) (json.Unmarshaler, encoding.TextUnmarshaler, reflect.Value) {
23 // If v is a named type and is addressable,
24 // start with its address, so that if the type has pointer methods,
25 // we find them.
26 if v.Kind() != reflect.Ptr && v.Type().Name() != "" && v.CanAddr() {
27 v = v.Addr()
28 }
29 for {
30 // Load value from interface, but only if the result will be
31 // usefully addressable.
32 if v.Kind() == reflect.Interface && !v.IsNil() {
33 e := v.Elem()
34 if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) {
35 v = e
36 continue
37 }
38 }
39
40 if v.Kind() != reflect.Ptr {
41 break
42 }
43
44 if v.Elem().Kind() != reflect.Ptr && decodingNull && v.CanSet() {
45 break
46 }
47 if v.IsNil() {
48 if v.CanSet() {
49 v.Set(reflect.New(v.Type().Elem()))
50 } else {
51 v = reflect.New(v.Type().Elem())
52 }
53 }
54 if v.Type().NumMethod() > 0 {
55 if u, ok := v.Interface().(json.Unmarshaler); ok {
56 return u, nil, reflect.Value{}
57 }
58 if u, ok := v.Interface().(encoding.TextUnmarshaler); ok {
59 return nil, u, reflect.Value{}
60 }
61 }
62 v = v.Elem()
63 }
64 return nil, nil, v
65}
66
67// A field represents a single field found in a struct.
68type field struct {
69 name string
70 nameBytes []byte // []byte(name)
71 equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
72
73 tag bool
74 index []int
75 typ reflect.Type
76 omitEmpty bool
77 quoted bool
78}
79
80func fillField(f field) field {
81 f.nameBytes = []byte(f.name)
82 f.equalFold = foldFunc(f.nameBytes)
83 return f
84}
85
86// byName sorts field by name, breaking ties with depth,
87// then breaking ties with "name came from json tag", then
88// breaking ties with index sequence.
89type byName []field
90
91func (x byName) Len() int { return len(x) }
92
93func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
94
95func (x byName) Less(i, j int) bool {
96 if x[i].name != x[j].name {
97 return x[i].name < x[j].name
98 }
99 if len(x[i].index) != len(x[j].index) {
100 return len(x[i].index) < len(x[j].index)
101 }
102 if x[i].tag != x[j].tag {
103 return x[i].tag
104 }
105 return byIndex(x).Less(i, j)
106}
107
108// byIndex sorts field by index sequence.
109type byIndex []field
110
111func (x byIndex) Len() int { return len(x) }
112
113func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
114
115func (x byIndex) Less(i, j int) bool {
116 for k, xik := range x[i].index {
117 if k >= len(x[j].index) {
118 return false
119 }
120 if xik != x[j].index[k] {
121 return xik < x[j].index[k]
122 }
123 }
124 return len(x[i].index) < len(x[j].index)
125}
126
127// typeFields returns a list of fields that JSON should recognize for the given type.
128// The algorithm is breadth-first search over the set of structs to include - the top struct
129// and then any reachable anonymous structs.
130func typeFields(t reflect.Type) []field {
131 // Anonymous fields to explore at the current level and the next.
132 current := []field{}
133 next := []field{{typ: t}}
134
135 // Count of queued names for current level and the next.
136 count := map[reflect.Type]int{}
137 nextCount := map[reflect.Type]int{}
138
139 // Types already visited at an earlier level.
140 visited := map[reflect.Type]bool{}
141
142 // Fields found.
143 var fields []field
144
145 for len(next) > 0 {
146 current, next = next, current[:0]
147 count, nextCount = nextCount, map[reflect.Type]int{}
148
149 for _, f := range current {
150 if visited[f.typ] {
151 continue
152 }
153 visited[f.typ] = true
154
155 // Scan f.typ for fields to include.
156 for i := 0; i < f.typ.NumField(); i++ {
157 sf := f.typ.Field(i)
158 if sf.PkgPath != "" { // unexported
159 continue
160 }
161 tag := sf.Tag.Get("json")
162 if tag == "-" {
163 continue
164 }
165 name, opts := parseTag(tag)
166 if !isValidTag(name) {
167 name = ""
168 }
169 index := make([]int, len(f.index)+1)
170 copy(index, f.index)
171 index[len(f.index)] = i
172
173 ft := sf.Type
174 if ft.Name() == "" && ft.Kind() == reflect.Ptr {
175 // Follow pointer.
176 ft = ft.Elem()
177 }
178
179 // Record found field and index sequence.
180 if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
181 tagged := name != ""
182 if name == "" {
183 name = sf.Name
184 }
185 fields = append(fields, fillField(field{
186 name: name,
187 tag: tagged,
188 index: index,
189 typ: ft,
190 omitEmpty: opts.Contains("omitempty"),
191 quoted: opts.Contains("string"),
192 }))
193 if count[f.typ] > 1 {
194 // If there were multiple instances, add a second,
195 // so that the annihilation code will see a duplicate.
196 // It only cares about the distinction between 1 or 2,
197 // so don't bother generating any more copies.
198 fields = append(fields, fields[len(fields)-1])
199 }
200 continue
201 }
202
203 // Record new anonymous struct to explore in next round.
204 nextCount[ft]++
205 if nextCount[ft] == 1 {
206 next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
207 }
208 }
209 }
210 }
211
212 sort.Sort(byName(fields))
213
214 // Delete all fields that are hidden by the Go rules for embedded fields,
215 // except that fields with JSON tags are promoted.
216
217 // The fields are sorted in primary order of name, secondary order
218 // of field index length. Loop over names; for each name, delete
219 // hidden fields by choosing the one dominant field that survives.
220 out := fields[:0]
221 for advance, i := 0, 0; i < len(fields); i += advance {
222 // One iteration per name.
223 // Find the sequence of fields with the name of this first field.
224 fi := fields[i]
225 name := fi.name
226 for advance = 1; i+advance < len(fields); advance++ {
227 fj := fields[i+advance]
228 if fj.name != name {
229 break
230 }
231 }
232 if advance == 1 { // Only one field with this name
233 out = append(out, fi)
234 continue
235 }
236 dominant, ok := dominantField(fields[i : i+advance])
237 if ok {
238 out = append(out, dominant)
239 }
240 }
241
242 fields = out
243 sort.Sort(byIndex(fields))
244
245 return fields
246}
247
248// dominantField looks through the fields, all of which are known to
249// have the same name, to find the single field that dominates the
250// others using Go's embedding rules, modified by the presence of
251// JSON tags. If there are multiple top-level fields, the boolean
252// will be false: This condition is an error in Go and we skip all
253// the fields.
254func dominantField(fields []field) (field, bool) {
255 // The fields are sorted in increasing index-length order. The winner
256 // must therefore be one with the shortest index length. Drop all
257 // longer entries, which is easy: just truncate the slice.
258 length := len(fields[0].index)
259 tagged := -1 // Index of first tagged field.
260 for i, f := range fields {
261 if len(f.index) > length {
262 fields = fields[:i]
263 break
264 }
265 if f.tag {
266 if tagged >= 0 {
267 // Multiple tagged fields at the same level: conflict.
268 // Return no field.
269 return field{}, false
270 }
271 tagged = i
272 }
273 }
274 if tagged >= 0 {
275 return fields[tagged], true
276 }
277 // All remaining fields have the same length. If there's more than one,
278 // we have a conflict (two fields named "X" at the same level) and we
279 // return no field.
280 if len(fields) > 1 {
281 return field{}, false
282 }
283 return fields[0], true
284}
285
286var fieldCache struct {
287 sync.RWMutex
288 m map[reflect.Type][]field
289}
290
291// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
292func cachedTypeFields(t reflect.Type) []field {
293 fieldCache.RLock()
294 f := fieldCache.m[t]
295 fieldCache.RUnlock()
296 if f != nil {
297 return f
298 }
299
300 // Compute fields without lock.
301 // Might duplicate effort but won't hold other computations back.
302 f = typeFields(t)
303 if f == nil {
304 f = []field{}
305 }
306
307 fieldCache.Lock()
308 if fieldCache.m == nil {
309 fieldCache.m = map[reflect.Type][]field{}
310 }
311 fieldCache.m[t] = f
312 fieldCache.Unlock()
313 return f
314}
315
316func isValidTag(s string) bool {
317 if s == "" {
318 return false
319 }
320 for _, c := range s {
321 switch {
322 case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
323 // Backslash and quote chars are reserved, but
324 // otherwise any punctuation chars are allowed
325 // in a tag name.
326 default:
327 if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
328 return false
329 }
330 }
331 }
332 return true
333}
334
335const (
336 caseMask = ^byte(0x20) // Mask to ignore case in ASCII.
337 kelvin = '\u212a'
338 smallLongEss = '\u017f'
339)
340
341// foldFunc returns one of four different case folding equivalence
342// functions, from most general (and slow) to fastest:
343//
344// 1) bytes.EqualFold, if the key s contains any non-ASCII UTF-8
345// 2) equalFoldRight, if s contains special folding ASCII ('k', 'K', 's', 'S')
346// 3) asciiEqualFold, no special, but includes non-letters (including _)
347// 4) simpleLetterEqualFold, no specials, no non-letters.
348//
349// The letters S and K are special because they map to 3 runes, not just 2:
350// * S maps to s and to U+017F 'ſ' Latin small letter long s
351// * k maps to K and to U+212A 'K' Kelvin sign
352// See http://play.golang.org/p/tTxjOc0OGo
353//
354// The returned function is specialized for matching against s and
355// should only be given s. It's not curried for performance reasons.
356func foldFunc(s []byte) func(s, t []byte) bool {
357 nonLetter := false
358 special := false // special letter
359 for _, b := range s {
360 if b >= utf8.RuneSelf {
361 return bytes.EqualFold
362 }
363 upper := b & caseMask
364 if upper < 'A' || upper > 'Z' {
365 nonLetter = true
366 } else if upper == 'K' || upper == 'S' {
367 // See above for why these letters are special.
368 special = true
369 }
370 }
371 if special {
372 return equalFoldRight
373 }
374 if nonLetter {
375 return asciiEqualFold
376 }
377 return simpleLetterEqualFold
378}
379
380// equalFoldRight is a specialization of bytes.EqualFold when s is
381// known to be all ASCII (including punctuation), but contains an 's',
382// 'S', 'k', or 'K', requiring a Unicode fold on the bytes in t.
383// See comments on foldFunc.
384func equalFoldRight(s, t []byte) bool {
385 for _, sb := range s {
386 if len(t) == 0 {
387 return false
388 }
389 tb := t[0]
390 if tb < utf8.RuneSelf {
391 if sb != tb {
392 sbUpper := sb & caseMask
393 if 'A' <= sbUpper && sbUpper <= 'Z' {
394 if sbUpper != tb&caseMask {
395 return false
396 }
397 } else {
398 return false
399 }
400 }
401 t = t[1:]
402 continue
403 }
404 // sb is ASCII and t is not. t must be either kelvin
405 // sign or long s; sb must be s, S, k, or K.
406 tr, size := utf8.DecodeRune(t)
407 switch sb {
408 case 's', 'S':
409 if tr != smallLongEss {
410 return false
411 }
412 case 'k', 'K':
413 if tr != kelvin {
414 return false
415 }
416 default:
417 return false
418 }
419 t = t[size:]
420
421 }
422 if len(t) > 0 {
423 return false
424 }
425 return true
426}
427
428// asciiEqualFold is a specialization of bytes.EqualFold for use when
429// s is all ASCII (but may contain non-letters) and contains no
430// special-folding letters.
431// See comments on foldFunc.
432func asciiEqualFold(s, t []byte) bool {
433 if len(s) != len(t) {
434 return false
435 }
436 for i, sb := range s {
437 tb := t[i]
438 if sb == tb {
439 continue
440 }
441 if ('a' <= sb && sb <= 'z') || ('A' <= sb && sb <= 'Z') {
442 if sb&caseMask != tb&caseMask {
443 return false
444 }
445 } else {
446 return false
447 }
448 }
449 return true
450}
451
452// simpleLetterEqualFold is a specialization of bytes.EqualFold for
453// use when s is all ASCII letters (no underscores, etc) and also
454// doesn't contain 'k', 'K', 's', or 'S'.
455// See comments on foldFunc.
456func simpleLetterEqualFold(s, t []byte) bool {
457 if len(s) != len(t) {
458 return false
459 }
460 for i, b := range s {
461 if b&caseMask != t[i]&caseMask {
462 return false
463 }
464 }
465 return true
466}
467
468// tagOptions is the string following a comma in a struct field's "json"
469// tag, or the empty string. It does not include the leading comma.
470type tagOptions string
471
472// parseTag splits a struct field's json tag into its name and
473// comma-separated options.
474func parseTag(tag string) (string, tagOptions) {
475 if idx := strings.Index(tag, ","); idx != -1 {
476 return tag[:idx], tagOptions(tag[idx+1:])
477 }
478 return tag, tagOptions("")
479}
480
481// Contains reports whether a comma-separated list of options
482// contains a particular substr flag. substr must be surrounded by a
483// string boundary or commas.
484func (o tagOptions) Contains(optionName string) bool {
485 if len(o) == 0 {
486 return false
487 }
488 s := string(o)
489 for s != "" {
490 var next string
491 i := strings.Index(s, ",")
492 if i >= 0 {
493 s, next = s[:i], s[i+1:]
494 }
495 if s == optionName {
496 return true
497 }
498 s = next
499 }
500 return false
501}