blob: bbf98b6f5eebbf0779b182ddf363eb7a1b0ab4e9 [file] [log] [blame]
Matthias Andreas Benkard832a54e2019-01-29 09:27:38 +01001/*
2 *
3 * Copyright 2014 gRPC authors.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 */
18
19package transport
20
21import (
22 "fmt"
23 "math"
24 "sync"
25 "sync/atomic"
26 "time"
27)
28
29const (
30 // The default value of flow control window size in HTTP2 spec.
31 defaultWindowSize = 65535
32 // The initial window size for flow control.
33 initialWindowSize = defaultWindowSize // for an RPC
34 infinity = time.Duration(math.MaxInt64)
35 defaultClientKeepaliveTime = infinity
36 defaultClientKeepaliveTimeout = 20 * time.Second
37 defaultMaxStreamsClient = 100
38 defaultMaxConnectionIdle = infinity
39 defaultMaxConnectionAge = infinity
40 defaultMaxConnectionAgeGrace = infinity
41 defaultServerKeepaliveTime = 2 * time.Hour
42 defaultServerKeepaliveTimeout = 20 * time.Second
43 defaultKeepalivePolicyMinTime = 5 * time.Minute
44 // max window limit set by HTTP2 Specs.
45 maxWindowSize = math.MaxInt32
46 // defaultWriteQuota is the default value for number of data
47 // bytes that each stream can schedule before some of it being
48 // flushed out.
49 defaultWriteQuota = 64 * 1024
50)
51
52// writeQuota is a soft limit on the amount of data a stream can
53// schedule before some of it is written out.
54type writeQuota struct {
55 quota int32
56 // get waits on read from when quota goes less than or equal to zero.
57 // replenish writes on it when quota goes positive again.
58 ch chan struct{}
59 // done is triggered in error case.
60 done <-chan struct{}
61 // replenish is called by loopyWriter to give quota back to.
62 // It is implemented as a field so that it can be updated
63 // by tests.
64 replenish func(n int)
65}
66
67func newWriteQuota(sz int32, done <-chan struct{}) *writeQuota {
68 w := &writeQuota{
69 quota: sz,
70 ch: make(chan struct{}, 1),
71 done: done,
72 }
73 w.replenish = w.realReplenish
74 return w
75}
76
77func (w *writeQuota) get(sz int32) error {
78 for {
79 if atomic.LoadInt32(&w.quota) > 0 {
80 atomic.AddInt32(&w.quota, -sz)
81 return nil
82 }
83 select {
84 case <-w.ch:
85 continue
86 case <-w.done:
87 return errStreamDone
88 }
89 }
90}
91
92func (w *writeQuota) realReplenish(n int) {
93 sz := int32(n)
94 a := atomic.AddInt32(&w.quota, sz)
95 b := a - sz
96 if b <= 0 && a > 0 {
97 select {
98 case w.ch <- struct{}{}:
99 default:
100 }
101 }
102}
103
104type trInFlow struct {
105 limit uint32
106 unacked uint32
107 effectiveWindowSize uint32
108}
109
110func (f *trInFlow) newLimit(n uint32) uint32 {
111 d := n - f.limit
112 f.limit = n
113 f.updateEffectiveWindowSize()
114 return d
115}
116
117func (f *trInFlow) onData(n uint32) uint32 {
118 f.unacked += n
119 if f.unacked >= f.limit/4 {
120 w := f.unacked
121 f.unacked = 0
122 f.updateEffectiveWindowSize()
123 return w
124 }
125 f.updateEffectiveWindowSize()
126 return 0
127}
128
129func (f *trInFlow) reset() uint32 {
130 w := f.unacked
131 f.unacked = 0
132 f.updateEffectiveWindowSize()
133 return w
134}
135
136func (f *trInFlow) updateEffectiveWindowSize() {
137 atomic.StoreUint32(&f.effectiveWindowSize, f.limit-f.unacked)
138}
139
140func (f *trInFlow) getSize() uint32 {
141 return atomic.LoadUint32(&f.effectiveWindowSize)
142}
143
144// TODO(mmukhi): Simplify this code.
145// inFlow deals with inbound flow control
146type inFlow struct {
147 mu sync.Mutex
148 // The inbound flow control limit for pending data.
149 limit uint32
150 // pendingData is the overall data which have been received but not been
151 // consumed by applications.
152 pendingData uint32
153 // The amount of data the application has consumed but grpc has not sent
154 // window update for them. Used to reduce window update frequency.
155 pendingUpdate uint32
156 // delta is the extra window update given by receiver when an application
157 // is reading data bigger in size than the inFlow limit.
158 delta uint32
159}
160
161// newLimit updates the inflow window to a new value n.
162// It assumes that n is always greater than the old limit.
163func (f *inFlow) newLimit(n uint32) uint32 {
164 f.mu.Lock()
165 d := n - f.limit
166 f.limit = n
167 f.mu.Unlock()
168 return d
169}
170
171func (f *inFlow) maybeAdjust(n uint32) uint32 {
172 if n > uint32(math.MaxInt32) {
173 n = uint32(math.MaxInt32)
174 }
175 f.mu.Lock()
176 // estSenderQuota is the receiver's view of the maximum number of bytes the sender
177 // can send without a window update.
178 estSenderQuota := int32(f.limit - (f.pendingData + f.pendingUpdate))
179 // estUntransmittedData is the maximum number of bytes the sends might not have put
180 // on the wire yet. A value of 0 or less means that we have already received all or
181 // more bytes than the application is requesting to read.
182 estUntransmittedData := int32(n - f.pendingData) // Casting into int32 since it could be negative.
183 // This implies that unless we send a window update, the sender won't be able to send all the bytes
184 // for this message. Therefore we must send an update over the limit since there's an active read
185 // request from the application.
186 if estUntransmittedData > estSenderQuota {
187 // Sender's window shouldn't go more than 2^31 - 1 as specified in the HTTP spec.
188 if f.limit+n > maxWindowSize {
189 f.delta = maxWindowSize - f.limit
190 } else {
191 // Send a window update for the whole message and not just the difference between
192 // estUntransmittedData and estSenderQuota. This will be helpful in case the message
193 // is padded; We will fallback on the current available window(at least a 1/4th of the limit).
194 f.delta = n
195 }
196 f.mu.Unlock()
197 return f.delta
198 }
199 f.mu.Unlock()
200 return 0
201}
202
203// onData is invoked when some data frame is received. It updates pendingData.
204func (f *inFlow) onData(n uint32) error {
205 f.mu.Lock()
206 f.pendingData += n
207 if f.pendingData+f.pendingUpdate > f.limit+f.delta {
208 limit := f.limit
209 rcvd := f.pendingData + f.pendingUpdate
210 f.mu.Unlock()
211 return fmt.Errorf("received %d-bytes data exceeding the limit %d bytes", rcvd, limit)
212 }
213 f.mu.Unlock()
214 return nil
215}
216
217// onRead is invoked when the application reads the data. It returns the window size
218// to be sent to the peer.
219func (f *inFlow) onRead(n uint32) uint32 {
220 f.mu.Lock()
221 if f.pendingData == 0 {
222 f.mu.Unlock()
223 return 0
224 }
225 f.pendingData -= n
226 if n > f.delta {
227 n -= f.delta
228 f.delta = 0
229 } else {
230 f.delta -= n
231 n = 0
232 }
233 f.pendingUpdate += n
234 if f.pendingUpdate >= f.limit/4 {
235 wu := f.pendingUpdate
236 f.pendingUpdate = 0
237 f.mu.Unlock()
238 return wu
239 }
240 f.mu.Unlock()
241 return 0
242}